ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfso Unicode version

Theorem nfso 4304
Description: Bound-variable hypothesis builder for total orders. (Contributed by Stefan O'Rear, 20-Jan-2015.)
Hypotheses
Ref Expression
nfpo.r  |-  F/_ x R
nfpo.a  |-  F/_ x A
Assertion
Ref Expression
nfso  |-  F/ x  R  Or  A

Proof of Theorem nfso
Dummy variables  a  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-iso 4299 . 2  |-  ( R  Or  A  <->  ( R  Po  A  /\  A. a  e.  A  A. b  e.  A  A. c  e.  A  ( a R b  ->  (
a R c  \/  c R b ) ) ) )
2 nfpo.r . . . 4  |-  F/_ x R
3 nfpo.a . . . 4  |-  F/_ x A
42, 3nfpo 4303 . . 3  |-  F/ x  R  Po  A
5 nfcv 2319 . . . . . . . 8  |-  F/_ x
a
6 nfcv 2319 . . . . . . . 8  |-  F/_ x
b
75, 2, 6nfbr 4051 . . . . . . 7  |-  F/ x  a R b
8 nfcv 2319 . . . . . . . . 9  |-  F/_ x
c
95, 2, 8nfbr 4051 . . . . . . . 8  |-  F/ x  a R c
108, 2, 6nfbr 4051 . . . . . . . 8  |-  F/ x  c R b
119, 10nfor 1574 . . . . . . 7  |-  F/ x
( a R c  \/  c R b )
127, 11nfim 1572 . . . . . 6  |-  F/ x
( a R b  ->  ( a R c  \/  c R b ) )
133, 12nfralxy 2515 . . . . 5  |-  F/ x A. c  e.  A  ( a R b  ->  ( a R c  \/  c R b ) )
143, 13nfralxy 2515 . . . 4  |-  F/ x A. b  e.  A  A. c  e.  A  ( a R b  ->  ( a R c  \/  c R b ) )
153, 14nfralxy 2515 . . 3  |-  F/ x A. a  e.  A  A. b  e.  A  A. c  e.  A  ( a R b  ->  ( a R c  \/  c R b ) )
164, 15nfan 1565 . 2  |-  F/ x
( R  Po  A  /\  A. a  e.  A  A. b  e.  A  A. c  e.  A  ( a R b  ->  ( a R c  \/  c R b ) ) )
171, 16nfxfr 1474 1  |-  F/ x  R  Or  A
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 708   F/wnf 1460   F/_wnfc 2306   A.wral 2455   class class class wbr 4005    Po wpo 4296    Or wor 4297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2741  df-un 3135  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-po 4298  df-iso 4299
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator