ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfso Unicode version

Theorem nfso 4350
Description: Bound-variable hypothesis builder for total orders. (Contributed by Stefan O'Rear, 20-Jan-2015.)
Hypotheses
Ref Expression
nfpo.r  |-  F/_ x R
nfpo.a  |-  F/_ x A
Assertion
Ref Expression
nfso  |-  F/ x  R  Or  A

Proof of Theorem nfso
Dummy variables  a  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-iso 4345 . 2  |-  ( R  Or  A  <->  ( R  Po  A  /\  A. a  e.  A  A. b  e.  A  A. c  e.  A  ( a R b  ->  (
a R c  \/  c R b ) ) ) )
2 nfpo.r . . . 4  |-  F/_ x R
3 nfpo.a . . . 4  |-  F/_ x A
42, 3nfpo 4349 . . 3  |-  F/ x  R  Po  A
5 nfcv 2348 . . . . . . . 8  |-  F/_ x
a
6 nfcv 2348 . . . . . . . 8  |-  F/_ x
b
75, 2, 6nfbr 4091 . . . . . . 7  |-  F/ x  a R b
8 nfcv 2348 . . . . . . . . 9  |-  F/_ x
c
95, 2, 8nfbr 4091 . . . . . . . 8  |-  F/ x  a R c
108, 2, 6nfbr 4091 . . . . . . . 8  |-  F/ x  c R b
119, 10nfor 1597 . . . . . . 7  |-  F/ x
( a R c  \/  c R b )
127, 11nfim 1595 . . . . . 6  |-  F/ x
( a R b  ->  ( a R c  \/  c R b ) )
133, 12nfralxy 2544 . . . . 5  |-  F/ x A. c  e.  A  ( a R b  ->  ( a R c  \/  c R b ) )
143, 13nfralxy 2544 . . . 4  |-  F/ x A. b  e.  A  A. c  e.  A  ( a R b  ->  ( a R c  \/  c R b ) )
153, 14nfralxy 2544 . . 3  |-  F/ x A. a  e.  A  A. b  e.  A  A. c  e.  A  ( a R b  ->  ( a R c  \/  c R b ) )
164, 15nfan 1588 . 2  |-  F/ x
( R  Po  A  /\  A. a  e.  A  A. b  e.  A  A. c  e.  A  ( a R b  ->  ( a R c  \/  c R b ) ) )
171, 16nfxfr 1497 1  |-  F/ x  R  Or  A
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 710   F/wnf 1483   F/_wnfc 2335   A.wral 2484   class class class wbr 4045    Po wpo 4342    Or wor 4343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642  df-br 4046  df-po 4344  df-iso 4345
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator