ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df2o2 Unicode version

Theorem df2o2 6530
Description: Expanded value of the ordinal number 2. (Contributed by NM, 29-Jan-2004.)
Assertion
Ref Expression
df2o2  |-  2o  =  { (/) ,  { (/) } }

Proof of Theorem df2o2
StepHypRef Expression
1 df2o3 6529 . 2  |-  2o  =  { (/) ,  1o }
2 df1o2 6528 . . 3  |-  1o  =  { (/) }
32preq2i 3719 . 2  |-  { (/) ,  1o }  =  { (/)
,  { (/) } }
41, 3eqtri 2227 1  |-  2o  =  { (/) ,  { (/) } }
Colors of variables: wff set class
Syntax hints:    = wceq 1373   (/)c0 3464   {csn 3638   {cpr 3639   1oc1o 6508   2oc2o 6509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-dif 3172  df-un 3174  df-nul 3465  df-sn 3644  df-pr 3645  df-suc 4426  df-1o 6515  df-2o 6516
This theorem is referenced by:  2dom  6911  exmidpw  7020  exmidpweq  7021  exmidpw2en  7024  pr0hash2ex  10982  ss1oel2o  16066
  Copyright terms: Public domain W3C validator