| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > df2o2 | Unicode version | ||
| Description: Expanded value of the ordinal number 2. (Contributed by NM, 29-Jan-2004.) | 
| Ref | Expression | 
|---|---|
| df2o2 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df2o3 6488 | 
. 2
 | |
| 2 | df1o2 6487 | 
. . 3
 | |
| 3 | 2 | preq2i 3703 | 
. 2
 | 
| 4 | 1, 3 | eqtri 2217 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-un 3161 df-nul 3451 df-sn 3628 df-pr 3629 df-suc 4406 df-1o 6474 df-2o 6475 | 
| This theorem is referenced by: 2dom 6864 exmidpw 6969 exmidpweq 6970 exmidpw2en 6973 pr0hash2ex 10907 ss1oel2o 15638 | 
| Copyright terms: Public domain | W3C validator |