ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df2o2 Unicode version

Theorem df2o2 6575
Description: Expanded value of the ordinal number 2. (Contributed by NM, 29-Jan-2004.)
Assertion
Ref Expression
df2o2  |-  2o  =  { (/) ,  { (/) } }

Proof of Theorem df2o2
StepHypRef Expression
1 df2o3 6574 . 2  |-  2o  =  { (/) ,  1o }
2 df1o2 6573 . . 3  |-  1o  =  { (/) }
32preq2i 3747 . 2  |-  { (/) ,  1o }  =  { (/)
,  { (/) } }
41, 3eqtri 2250 1  |-  2o  =  { (/) ,  { (/) } }
Colors of variables: wff set class
Syntax hints:    = wceq 1395   (/)c0 3491   {csn 3666   {cpr 3667   1oc1o 6553   2oc2o 6554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-un 3201  df-nul 3492  df-sn 3672  df-pr 3673  df-suc 4461  df-1o 6560  df-2o 6561
This theorem is referenced by:  2dom  6956  exmidpw  7066  exmidpweq  7067  exmidpw2en  7070  pr0hash2ex  11032  ss1oel2o  16313
  Copyright terms: Public domain W3C validator