Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df2o2 | Unicode version |
Description: Expanded value of the ordinal number 2. (Contributed by NM, 29-Jan-2004.) |
Ref | Expression |
---|---|
df2o2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df2o3 6374 | . 2 | |
2 | df1o2 6373 | . . 3 | |
3 | 2 | preq2i 3640 | . 2 |
4 | 1, 3 | eqtri 2178 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1335 c0 3394 csn 3560 cpr 3561 c1o 6353 c2o 6354 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-dif 3104 df-un 3106 df-nul 3395 df-sn 3566 df-pr 3567 df-suc 4331 df-1o 6360 df-2o 6361 |
This theorem is referenced by: 2dom 6747 exmidpw 6850 exmidpweq 6851 pr0hash2ex 10682 ss1oel2o 13536 |
Copyright terms: Public domain | W3C validator |