ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df2o2 Unicode version

Theorem df2o2 6375
Description: Expanded value of the ordinal number 2. (Contributed by NM, 29-Jan-2004.)
Assertion
Ref Expression
df2o2  |-  2o  =  { (/) ,  { (/) } }

Proof of Theorem df2o2
StepHypRef Expression
1 df2o3 6374 . 2  |-  2o  =  { (/) ,  1o }
2 df1o2 6373 . . 3  |-  1o  =  { (/) }
32preq2i 3640 . 2  |-  { (/) ,  1o }  =  { (/)
,  { (/) } }
41, 3eqtri 2178 1  |-  2o  =  { (/) ,  { (/) } }
Colors of variables: wff set class
Syntax hints:    = wceq 1335   (/)c0 3394   {csn 3560   {cpr 3561   1oc1o 6353   2oc2o 6354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-dif 3104  df-un 3106  df-nul 3395  df-sn 3566  df-pr 3567  df-suc 4331  df-1o 6360  df-2o 6361
This theorem is referenced by:  2dom  6747  exmidpw  6850  exmidpweq  6851  pr0hash2ex  10682  ss1oel2o  13536
  Copyright terms: Public domain W3C validator