ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df2o2 Unicode version

Theorem df2o2 6498
Description: Expanded value of the ordinal number 2. (Contributed by NM, 29-Jan-2004.)
Assertion
Ref Expression
df2o2  |-  2o  =  { (/) ,  { (/) } }

Proof of Theorem df2o2
StepHypRef Expression
1 df2o3 6497 . 2  |-  2o  =  { (/) ,  1o }
2 df1o2 6496 . . 3  |-  1o  =  { (/) }
32preq2i 3704 . 2  |-  { (/) ,  1o }  =  { (/)
,  { (/) } }
41, 3eqtri 2217 1  |-  2o  =  { (/) ,  { (/) } }
Colors of variables: wff set class
Syntax hints:    = wceq 1364   (/)c0 3451   {csn 3623   {cpr 3624   1oc1o 6476   2oc2o 6477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-un 3161  df-nul 3452  df-sn 3629  df-pr 3630  df-suc 4407  df-1o 6483  df-2o 6484
This theorem is referenced by:  2dom  6873  exmidpw  6978  exmidpweq  6979  exmidpw2en  6982  pr0hash2ex  10924  ss1oel2o  15722
  Copyright terms: Public domain W3C validator