Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  ss1oel2o Unicode version

Theorem ss1oel2o 13873
Description: Any subset of ordinal one being an element of ordinal two is equivalent to excluded middle. A variation of exmid01 4177 which more directly illustrates the contrast with el2oss1o 6411. (Contributed by Jim Kingdon, 8-Aug-2022.)
Assertion
Ref Expression
ss1oel2o  |-  (EXMID  <->  A. x
( x  C_  1o  ->  x  e.  2o ) )

Proof of Theorem ss1oel2o
StepHypRef Expression
1 exmid01 4177 . 2  |-  (EXMID  <->  A. x
( x  C_  { (/) }  ->  ( x  =  (/)  \/  x  =  { (/)
} ) ) )
2 df1o2 6397 . . . . 5  |-  1o  =  { (/) }
32sseq2i 3169 . . . 4  |-  ( x 
C_  1o  <->  x  C_  { (/) } )
4 df2o2 6399 . . . . . 6  |-  2o  =  { (/) ,  { (/) } }
54eleq2i 2233 . . . . 5  |-  ( x  e.  2o  <->  x  e.  {
(/) ,  { (/) } }
)
6 vex 2729 . . . . . 6  |-  x  e. 
_V
76elpr 3597 . . . . 5  |-  ( x  e.  { (/) ,  { (/)
} }  <->  ( x  =  (/)  \/  x  =  { (/) } ) )
85, 7bitri 183 . . . 4  |-  ( x  e.  2o  <->  ( x  =  (/)  \/  x  =  { (/) } ) )
93, 8imbi12i 238 . . 3  |-  ( ( x  C_  1o  ->  x  e.  2o )  <->  ( x  C_ 
{ (/) }  ->  (
x  =  (/)  \/  x  =  { (/) } ) ) )
109albii 1458 . 2  |-  ( A. x ( x  C_  1o  ->  x  e.  2o ) 
<-> 
A. x ( x 
C_  { (/) }  ->  ( x  =  (/)  \/  x  =  { (/) } ) ) )
111, 10bitr4i 186 1  |-  (EXMID  <->  A. x
( x  C_  1o  ->  x  e.  2o ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    \/ wo 698   A.wal 1341    = wceq 1343    e. wcel 2136    C_ wss 3116   (/)c0 3409   {csn 3576   {cpr 3577  EXMIDwem 4173   1oc1o 6377   2oc2o 6378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-nul 4108
This theorem depends on definitions:  df-bi 116  df-dc 825  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-sn 3582  df-pr 3583  df-exmid 4174  df-suc 4349  df-1o 6384  df-2o 6385
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator