Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  ss1oel2o Unicode version

Theorem ss1oel2o 15605
Description: Any subset of ordinal one being an element of ordinal two is equivalent to excluded middle. A variation of exmid01 4231 which more directly illustrates the contrast with el2oss1o 6501. (Contributed by Jim Kingdon, 8-Aug-2022.)
Assertion
Ref Expression
ss1oel2o  |-  (EXMID  <->  A. x
( x  C_  1o  ->  x  e.  2o ) )

Proof of Theorem ss1oel2o
StepHypRef Expression
1 exmid01 4231 . 2  |-  (EXMID  <->  A. x
( x  C_  { (/) }  ->  ( x  =  (/)  \/  x  =  { (/)
} ) ) )
2 df1o2 6487 . . . . 5  |-  1o  =  { (/) }
32sseq2i 3210 . . . 4  |-  ( x 
C_  1o  <->  x  C_  { (/) } )
4 df2o2 6489 . . . . . 6  |-  2o  =  { (/) ,  { (/) } }
54eleq2i 2263 . . . . 5  |-  ( x  e.  2o  <->  x  e.  {
(/) ,  { (/) } }
)
6 vex 2766 . . . . . 6  |-  x  e. 
_V
76elpr 3643 . . . . 5  |-  ( x  e.  { (/) ,  { (/)
} }  <->  ( x  =  (/)  \/  x  =  { (/) } ) )
85, 7bitri 184 . . . 4  |-  ( x  e.  2o  <->  ( x  =  (/)  \/  x  =  { (/) } ) )
93, 8imbi12i 239 . . 3  |-  ( ( x  C_  1o  ->  x  e.  2o )  <->  ( x  C_ 
{ (/) }  ->  (
x  =  (/)  \/  x  =  { (/) } ) ) )
109albii 1484 . 2  |-  ( A. x ( x  C_  1o  ->  x  e.  2o ) 
<-> 
A. x ( x 
C_  { (/) }  ->  ( x  =  (/)  \/  x  =  { (/) } ) ) )
111, 10bitr4i 187 1  |-  (EXMID  <->  A. x
( x  C_  1o  ->  x  e.  2o ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    \/ wo 709   A.wal 1362    = wceq 1364    e. wcel 2167    C_ wss 3157   (/)c0 3450   {csn 3622   {cpr 3623  EXMIDwem 4227   1oc1o 6467   2oc2o 6468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-nul 4159
This theorem depends on definitions:  df-bi 117  df-dc 836  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-sn 3628  df-pr 3629  df-exmid 4228  df-suc 4406  df-1o 6474  df-2o 6475
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator