Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > ss1oel2o | Unicode version |
Description: Any subset of ordinal one being an element of ordinal two is equivalent to excluded middle. A variation of exmid01 4159 which more directly illustrates the contrast with el2oss1o 6387. (Contributed by Jim Kingdon, 8-Aug-2022.) |
Ref | Expression |
---|---|
ss1oel2o | EXMID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmid01 4159 | . 2 EXMID | |
2 | df1o2 6373 | . . . . 5 | |
3 | 2 | sseq2i 3155 | . . . 4 |
4 | df2o2 6375 | . . . . . 6 | |
5 | 4 | eleq2i 2224 | . . . . 5 |
6 | vex 2715 | . . . . . 6 | |
7 | 6 | elpr 3581 | . . . . 5 |
8 | 5, 7 | bitri 183 | . . . 4 |
9 | 3, 8 | imbi12i 238 | . . 3 |
10 | 9 | albii 1450 | . 2 |
11 | 1, 10 | bitr4i 186 | 1 EXMID |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wo 698 wal 1333 wceq 1335 wcel 2128 wss 3102 c0 3394 csn 3560 cpr 3561 EXMIDwem 4155 c1o 6353 c2o 6354 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 ax-nul 4090 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-sn 3566 df-pr 3567 df-exmid 4156 df-suc 4331 df-1o 6360 df-2o 6361 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |