ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df2o2 GIF version

Theorem df2o2 6434
Description: Expanded value of the ordinal number 2. (Contributed by NM, 29-Jan-2004.)
Assertion
Ref Expression
df2o2 2o = {∅, {∅}}

Proof of Theorem df2o2
StepHypRef Expression
1 df2o3 6433 . 2 2o = {∅, 1o}
2 df1o2 6432 . . 3 1o = {∅}
32preq2i 3675 . 2 {∅, 1o} = {∅, {∅}}
41, 3eqtri 2198 1 2o = {∅, {∅}}
Colors of variables: wff set class
Syntax hints:   = wceq 1353  c0 3424  {csn 3594  {cpr 3595  1oc1o 6412  2oc2o 6413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-dif 3133  df-un 3135  df-nul 3425  df-sn 3600  df-pr 3601  df-suc 4373  df-1o 6419  df-2o 6420
This theorem is referenced by:  2dom  6807  exmidpw  6910  exmidpweq  6911  pr0hash2ex  10797  ss1oel2o  14828
  Copyright terms: Public domain W3C validator