| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df2o2 | GIF version | ||
| Description: Expanded value of the ordinal number 2. (Contributed by NM, 29-Jan-2004.) |
| Ref | Expression |
|---|---|
| df2o2 | ⊢ 2o = {∅, {∅}} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df2o3 6583 | . 2 ⊢ 2o = {∅, 1o} | |
| 2 | df1o2 6582 | . . 3 ⊢ 1o = {∅} | |
| 3 | 2 | preq2i 3747 | . 2 ⊢ {∅, 1o} = {∅, {∅}} |
| 4 | 1, 3 | eqtri 2250 | 1 ⊢ 2o = {∅, {∅}} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∅c0 3491 {csn 3666 {cpr 3667 1oc1o 6561 2oc2o 6562 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 df-un 3201 df-nul 3492 df-sn 3672 df-pr 3673 df-suc 4462 df-1o 6568 df-2o 6569 |
| This theorem is referenced by: 2dom 6966 exmidpw 7078 exmidpweq 7079 exmidpw2en 7082 pr0hash2ex 11045 ss1oel2o 16380 |
| Copyright terms: Public domain | W3C validator |