| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df2o2 | GIF version | ||
| Description: Expanded value of the ordinal number 2. (Contributed by NM, 29-Jan-2004.) |
| Ref | Expression |
|---|---|
| df2o2 | ⊢ 2o = {∅, {∅}} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df2o3 6546 | . 2 ⊢ 2o = {∅, 1o} | |
| 2 | df1o2 6545 | . . 3 ⊢ 1o = {∅} | |
| 3 | 2 | preq2i 3727 | . 2 ⊢ {∅, 1o} = {∅, {∅}} |
| 4 | 1, 3 | eqtri 2230 | 1 ⊢ 2o = {∅, {∅}} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1375 ∅c0 3471 {csn 3646 {cpr 3647 1oc1o 6525 2oc2o 6526 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-v 2781 df-dif 3179 df-un 3181 df-nul 3472 df-sn 3652 df-pr 3653 df-suc 4439 df-1o 6532 df-2o 6533 |
| This theorem is referenced by: 2dom 6928 exmidpw 7038 exmidpweq 7039 exmidpw2en 7042 pr0hash2ex 11004 ss1oel2o 16265 |
| Copyright terms: Public domain | W3C validator |