| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df2o2 | GIF version | ||
| Description: Expanded value of the ordinal number 2. (Contributed by NM, 29-Jan-2004.) |
| Ref | Expression |
|---|---|
| df2o2 | ⊢ 2o = {∅, {∅}} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df2o3 6497 | . 2 ⊢ 2o = {∅, 1o} | |
| 2 | df1o2 6496 | . . 3 ⊢ 1o = {∅} | |
| 3 | 2 | preq2i 3704 | . 2 ⊢ {∅, 1o} = {∅, {∅}} |
| 4 | 1, 3 | eqtri 2217 | 1 ⊢ 2o = {∅, {∅}} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∅c0 3451 {csn 3623 {cpr 3624 1oc1o 6476 2oc2o 6477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-un 3161 df-nul 3452 df-sn 3629 df-pr 3630 df-suc 4407 df-1o 6483 df-2o 6484 |
| This theorem is referenced by: 2dom 6873 exmidpw 6978 exmidpweq 6979 exmidpw2en 6982 pr0hash2ex 10924 ss1oel2o 15722 |
| Copyright terms: Public domain | W3C validator |