![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df2o2 | GIF version |
Description: Expanded value of the ordinal number 2. (Contributed by NM, 29-Jan-2004.) |
Ref | Expression |
---|---|
df2o2 | ⊢ 2o = {∅, {∅}} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df2o3 6233 | . 2 ⊢ 2o = {∅, 1o} | |
2 | df1o2 6232 | . . 3 ⊢ 1o = {∅} | |
3 | 2 | preq2i 3543 | . 2 ⊢ {∅, 1o} = {∅, {∅}} |
4 | 1, 3 | eqtri 2115 | 1 ⊢ 2o = {∅, {∅}} |
Colors of variables: wff set class |
Syntax hints: = wceq 1296 ∅c0 3302 {csn 3466 {cpr 3467 1oc1o 6212 2oc2o 6213 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-tru 1299 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-v 2635 df-dif 3015 df-un 3017 df-nul 3303 df-sn 3472 df-pr 3473 df-suc 4222 df-1o 6219 df-2o 6220 |
This theorem is referenced by: 2dom 6602 exmidpw 6704 pr0hash2ex 10354 ss1oel2o 12598 |
Copyright terms: Public domain | W3C validator |