ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df2o2 GIF version

Theorem df2o2 6234
Description: Expanded value of the ordinal number 2. (Contributed by NM, 29-Jan-2004.)
Assertion
Ref Expression
df2o2 2o = {∅, {∅}}

Proof of Theorem df2o2
StepHypRef Expression
1 df2o3 6233 . 2 2o = {∅, 1o}
2 df1o2 6232 . . 3 1o = {∅}
32preq2i 3543 . 2 {∅, 1o} = {∅, {∅}}
41, 3eqtri 2115 1 2o = {∅, {∅}}
Colors of variables: wff set class
Syntax hints:   = wceq 1296  c0 3302  {csn 3466  {cpr 3467  1oc1o 6212  2oc2o 6213
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077
This theorem depends on definitions:  df-bi 116  df-tru 1299  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-v 2635  df-dif 3015  df-un 3017  df-nul 3303  df-sn 3472  df-pr 3473  df-suc 4222  df-1o 6219  df-2o 6220
This theorem is referenced by:  2dom  6602  exmidpw  6704  pr0hash2ex  10354  ss1oel2o  12598
  Copyright terms: Public domain W3C validator