Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df2o2 | GIF version |
Description: Expanded value of the ordinal number 2. (Contributed by NM, 29-Jan-2004.) |
Ref | Expression |
---|---|
df2o2 | ⊢ 2o = {∅, {∅}} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df2o3 6421 | . 2 ⊢ 2o = {∅, 1o} | |
2 | df1o2 6420 | . . 3 ⊢ 1o = {∅} | |
3 | 2 | preq2i 3670 | . 2 ⊢ {∅, 1o} = {∅, {∅}} |
4 | 1, 3 | eqtri 2196 | 1 ⊢ 2o = {∅, {∅}} |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ∅c0 3420 {csn 3589 {cpr 3590 1oc1o 6400 2oc2o 6401 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-dif 3129 df-un 3131 df-nul 3421 df-sn 3595 df-pr 3596 df-suc 4365 df-1o 6407 df-2o 6408 |
This theorem is referenced by: 2dom 6795 exmidpw 6898 exmidpweq 6899 pr0hash2ex 10761 ss1oel2o 14301 |
Copyright terms: Public domain | W3C validator |