ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df2o2 GIF version

Theorem df2o2 6484
Description: Expanded value of the ordinal number 2. (Contributed by NM, 29-Jan-2004.)
Assertion
Ref Expression
df2o2 2o = {∅, {∅}}

Proof of Theorem df2o2
StepHypRef Expression
1 df2o3 6483 . 2 2o = {∅, 1o}
2 df1o2 6482 . . 3 1o = {∅}
32preq2i 3699 . 2 {∅, 1o} = {∅, {∅}}
41, 3eqtri 2214 1 2o = {∅, {∅}}
Colors of variables: wff set class
Syntax hints:   = wceq 1364  c0 3446  {csn 3618  {cpr 3619  1oc1o 6462  2oc2o 6463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-dif 3155  df-un 3157  df-nul 3447  df-sn 3624  df-pr 3625  df-suc 4402  df-1o 6469  df-2o 6470
This theorem is referenced by:  2dom  6859  exmidpw  6964  exmidpweq  6965  exmidpw2en  6968  pr0hash2ex  10886  ss1oel2o  15484
  Copyright terms: Public domain W3C validator