![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df2o2 | GIF version |
Description: Expanded value of the ordinal number 2. (Contributed by NM, 29-Jan-2004.) |
Ref | Expression |
---|---|
df2o2 | ⊢ 2o = {∅, {∅}} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df2o3 6485 | . 2 ⊢ 2o = {∅, 1o} | |
2 | df1o2 6484 | . . 3 ⊢ 1o = {∅} | |
3 | 2 | preq2i 3700 | . 2 ⊢ {∅, 1o} = {∅, {∅}} |
4 | 1, 3 | eqtri 2214 | 1 ⊢ 2o = {∅, {∅}} |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∅c0 3447 {csn 3619 {cpr 3620 1oc1o 6464 2oc2o 6465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-dif 3156 df-un 3158 df-nul 3448 df-sn 3625 df-pr 3626 df-suc 4403 df-1o 6471 df-2o 6472 |
This theorem is referenced by: 2dom 6861 exmidpw 6966 exmidpweq 6967 exmidpw2en 6970 pr0hash2ex 10889 ss1oel2o 15554 |
Copyright terms: Public domain | W3C validator |