ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df2o2 GIF version

Theorem df2o2 6422
Description: Expanded value of the ordinal number 2. (Contributed by NM, 29-Jan-2004.)
Assertion
Ref Expression
df2o2 2o = {∅, {∅}}

Proof of Theorem df2o2
StepHypRef Expression
1 df2o3 6421 . 2 2o = {∅, 1o}
2 df1o2 6420 . . 3 1o = {∅}
32preq2i 3670 . 2 {∅, 1o} = {∅, {∅}}
41, 3eqtri 2196 1 2o = {∅, {∅}}
Colors of variables: wff set class
Syntax hints:   = wceq 1353  c0 3420  {csn 3589  {cpr 3590  1oc1o 6400  2oc2o 6401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-v 2737  df-dif 3129  df-un 3131  df-nul 3421  df-sn 3595  df-pr 3596  df-suc 4365  df-1o 6407  df-2o 6408
This theorem is referenced by:  2dom  6795  exmidpw  6898  exmidpweq  6899  pr0hash2ex  10761  ss1oel2o  14301
  Copyright terms: Public domain W3C validator