ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df2o2 GIF version

Theorem df2o2 6489
Description: Expanded value of the ordinal number 2. (Contributed by NM, 29-Jan-2004.)
Assertion
Ref Expression
df2o2 2o = {∅, {∅}}

Proof of Theorem df2o2
StepHypRef Expression
1 df2o3 6488 . 2 2o = {∅, 1o}
2 df1o2 6487 . . 3 1o = {∅}
32preq2i 3703 . 2 {∅, 1o} = {∅, {∅}}
41, 3eqtri 2217 1 2o = {∅, {∅}}
Colors of variables: wff set class
Syntax hints:   = wceq 1364  c0 3450  {csn 3622  {cpr 3623  1oc1o 6467  2oc2o 6468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-un 3161  df-nul 3451  df-sn 3628  df-pr 3629  df-suc 4406  df-1o 6474  df-2o 6475
This theorem is referenced by:  2dom  6864  exmidpw  6969  exmidpweq  6970  exmidpw2en  6973  pr0hash2ex  10907  ss1oel2o  15638
  Copyright terms: Public domain W3C validator