ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfiin3 Unicode version

Theorem dfiin3 4922
Description: Alternate definition of indexed intersection when  B is a set. (Contributed by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
dfiun3.1  |-  B  e. 
_V
Assertion
Ref Expression
dfiin3  |-  |^|_ x  e.  A  B  =  |^| ran  ( x  e.  A  |->  B )

Proof of Theorem dfiin3
StepHypRef Expression
1 dfiin3g 4920 . 2  |-  ( A. x  e.  A  B  e.  _V  ->  |^|_ x  e.  A  B  =  |^| ran  ( x  e.  A  |->  B ) )
2 dfiun3.1 . . 3  |-  B  e. 
_V
32a1i 9 . 2  |-  ( x  e.  A  ->  B  e.  _V )
41, 3mprg 2551 1  |-  |^|_ x  e.  A  B  =  |^| ran  ( x  e.  A  |->  B )
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2164   _Vcvv 2760   |^|cint 3870   |^|_ciin 3913    |-> cmpt 4090   ran crn 4660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-int 3871  df-iin 3915  df-br 4030  df-opab 4091  df-mpt 4092  df-cnv 4667  df-dm 4669  df-rn 4670
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator