ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfiin3 Unicode version

Theorem dfiin3 4706
Description: Alternate definition of indexed intersection when  B is a set. (Contributed by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
dfiun3.1  |-  B  e. 
_V
Assertion
Ref Expression
dfiin3  |-  |^|_ x  e.  A  B  =  |^| ran  ( x  e.  A  |->  B )

Proof of Theorem dfiin3
StepHypRef Expression
1 dfiin3g 4704 . 2  |-  ( A. x  e.  A  B  e.  _V  ->  |^|_ x  e.  A  B  =  |^| ran  ( x  e.  A  |->  B ) )
2 dfiun3.1 . . 3  |-  B  e. 
_V
32a1i 9 . 2  |-  ( x  e.  A  ->  B  e.  _V )
41, 3mprg 2433 1  |-  |^|_ x  e.  A  B  =  |^| ran  ( x  e.  A  |->  B )
Colors of variables: wff set class
Syntax hints:    = wceq 1290    e. wcel 1439   _Vcvv 2620   |^|cint 3694   |^|_ciin 3737    |-> cmpt 3905   ran crn 4452
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-v 2622  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-int 3695  df-iin 3739  df-br 3852  df-opab 3906  df-mpt 3907  df-cnv 4459  df-dm 4461  df-rn 4462
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator