ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riinint Unicode version

Theorem riinint 4940
Description: Express a relative indexed intersection as an intersection. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
riinint  |-  ( ( X  e.  V  /\  A. k  e.  I  S 
C_  X )  -> 
( X  i^i  |^|_ k  e.  I  S
)  =  |^| ( { X }  u.  ran  ( k  e.  I  |->  S ) ) )
Distinct variable groups:    k, V    k, X
Allowed substitution hints:    S( k)    I(
k)

Proof of Theorem riinint
StepHypRef Expression
1 ssexg 4184 . . . . . . 7  |-  ( ( S  C_  X  /\  X  e.  V )  ->  S  e.  _V )
21expcom 116 . . . . . 6  |-  ( X  e.  V  ->  ( S  C_  X  ->  S  e.  _V ) )
32ralimdv 2574 . . . . 5  |-  ( X  e.  V  ->  ( A. k  e.  I  S  C_  X  ->  A. k  e.  I  S  e.  _V ) )
43imp 124 . . . 4  |-  ( ( X  e.  V  /\  A. k  e.  I  S 
C_  X )  ->  A. k  e.  I  S  e.  _V )
5 dfiin3g 4937 . . . 4  |-  ( A. k  e.  I  S  e.  _V  ->  |^|_ k  e.  I  S  =  |^| ran  ( k  e.  I  |->  S ) )
64, 5syl 14 . . 3  |-  ( ( X  e.  V  /\  A. k  e.  I  S 
C_  X )  ->  |^|_ k  e.  I  S  =  |^| ran  (
k  e.  I  |->  S ) )
76ineq2d 3374 . 2  |-  ( ( X  e.  V  /\  A. k  e.  I  S 
C_  X )  -> 
( X  i^i  |^|_ k  e.  I  S
)  =  ( X  i^i  |^| ran  ( k  e.  I  |->  S ) ) )
8 intun 3916 . . 3  |-  |^| ( { X }  u.  ran  ( k  e.  I  |->  S ) )  =  ( |^| { X }  i^i  |^| ran  ( k  e.  I  |->  S ) )
9 intsng 3919 . . . . 5  |-  ( X  e.  V  ->  |^| { X }  =  X )
109adantr 276 . . . 4  |-  ( ( X  e.  V  /\  A. k  e.  I  S 
C_  X )  ->  |^| { X }  =  X )
1110ineq1d 3373 . . 3  |-  ( ( X  e.  V  /\  A. k  e.  I  S 
C_  X )  -> 
( |^| { X }  i^i  |^| ran  ( k  e.  I  |->  S ) )  =  ( X  i^i  |^| ran  ( k  e.  I  |->  S ) ) )
128, 11eqtrid 2250 . 2  |-  ( ( X  e.  V  /\  A. k  e.  I  S 
C_  X )  ->  |^| ( { X }  u.  ran  ( k  e.  I  |->  S ) )  =  ( X  i^i  |^|
ran  ( k  e.  I  |->  S ) ) )
137, 12eqtr4d 2241 1  |-  ( ( X  e.  V  /\  A. k  e.  I  S 
C_  X )  -> 
( X  i^i  |^|_ k  e.  I  S
)  =  |^| ( { X }  u.  ran  ( k  e.  I  |->  S ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   A.wral 2484   _Vcvv 2772    u. cun 3164    i^i cin 3165    C_ wss 3166   {csn 3633   |^|cint 3885   |^|_ciin 3928    |-> cmpt 4106   ran crn 4677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-int 3886  df-iin 3930  df-br 4046  df-opab 4107  df-mpt 4108  df-cnv 4684  df-dm 4686  df-rn 4687
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator