ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riinint Unicode version

Theorem riinint 4928
Description: Express a relative indexed intersection as an intersection. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
riinint  |-  ( ( X  e.  V  /\  A. k  e.  I  S 
C_  X )  -> 
( X  i^i  |^|_ k  e.  I  S
)  =  |^| ( { X }  u.  ran  ( k  e.  I  |->  S ) ) )
Distinct variable groups:    k, V    k, X
Allowed substitution hints:    S( k)    I(
k)

Proof of Theorem riinint
StepHypRef Expression
1 ssexg 4173 . . . . . . 7  |-  ( ( S  C_  X  /\  X  e.  V )  ->  S  e.  _V )
21expcom 116 . . . . . 6  |-  ( X  e.  V  ->  ( S  C_  X  ->  S  e.  _V ) )
32ralimdv 2565 . . . . 5  |-  ( X  e.  V  ->  ( A. k  e.  I  S  C_  X  ->  A. k  e.  I  S  e.  _V ) )
43imp 124 . . . 4  |-  ( ( X  e.  V  /\  A. k  e.  I  S 
C_  X )  ->  A. k  e.  I  S  e.  _V )
5 dfiin3g 4925 . . . 4  |-  ( A. k  e.  I  S  e.  _V  ->  |^|_ k  e.  I  S  =  |^| ran  ( k  e.  I  |->  S ) )
64, 5syl 14 . . 3  |-  ( ( X  e.  V  /\  A. k  e.  I  S 
C_  X )  ->  |^|_ k  e.  I  S  =  |^| ran  (
k  e.  I  |->  S ) )
76ineq2d 3365 . 2  |-  ( ( X  e.  V  /\  A. k  e.  I  S 
C_  X )  -> 
( X  i^i  |^|_ k  e.  I  S
)  =  ( X  i^i  |^| ran  ( k  e.  I  |->  S ) ) )
8 intun 3906 . . 3  |-  |^| ( { X }  u.  ran  ( k  e.  I  |->  S ) )  =  ( |^| { X }  i^i  |^| ran  ( k  e.  I  |->  S ) )
9 intsng 3909 . . . . 5  |-  ( X  e.  V  ->  |^| { X }  =  X )
109adantr 276 . . . 4  |-  ( ( X  e.  V  /\  A. k  e.  I  S 
C_  X )  ->  |^| { X }  =  X )
1110ineq1d 3364 . . 3  |-  ( ( X  e.  V  /\  A. k  e.  I  S 
C_  X )  -> 
( |^| { X }  i^i  |^| ran  ( k  e.  I  |->  S ) )  =  ( X  i^i  |^| ran  ( k  e.  I  |->  S ) ) )
128, 11eqtrid 2241 . 2  |-  ( ( X  e.  V  /\  A. k  e.  I  S 
C_  X )  ->  |^| ( { X }  u.  ran  ( k  e.  I  |->  S ) )  =  ( X  i^i  |^|
ran  ( k  e.  I  |->  S ) ) )
137, 12eqtr4d 2232 1  |-  ( ( X  e.  V  /\  A. k  e.  I  S 
C_  X )  -> 
( X  i^i  |^|_ k  e.  I  S
)  =  |^| ( { X }  u.  ran  ( k  e.  I  |->  S ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   A.wral 2475   _Vcvv 2763    u. cun 3155    i^i cin 3156    C_ wss 3157   {csn 3623   |^|cint 3875   |^|_ciin 3918    |-> cmpt 4095   ran crn 4665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-int 3876  df-iin 3920  df-br 4035  df-opab 4096  df-mpt 4097  df-cnv 4672  df-dm 4674  df-rn 4675
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator