ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riinint Unicode version

Theorem riinint 4906
Description: Express a relative indexed intersection as an intersection. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
riinint  |-  ( ( X  e.  V  /\  A. k  e.  I  S 
C_  X )  -> 
( X  i^i  |^|_ k  e.  I  S
)  =  |^| ( { X }  u.  ran  ( k  e.  I  |->  S ) ) )
Distinct variable groups:    k, V    k, X
Allowed substitution hints:    S( k)    I(
k)

Proof of Theorem riinint
StepHypRef Expression
1 ssexg 4157 . . . . . . 7  |-  ( ( S  C_  X  /\  X  e.  V )  ->  S  e.  _V )
21expcom 116 . . . . . 6  |-  ( X  e.  V  ->  ( S  C_  X  ->  S  e.  _V ) )
32ralimdv 2558 . . . . 5  |-  ( X  e.  V  ->  ( A. k  e.  I  S  C_  X  ->  A. k  e.  I  S  e.  _V ) )
43imp 124 . . . 4  |-  ( ( X  e.  V  /\  A. k  e.  I  S 
C_  X )  ->  A. k  e.  I  S  e.  _V )
5 dfiin3g 4903 . . . 4  |-  ( A. k  e.  I  S  e.  _V  ->  |^|_ k  e.  I  S  =  |^| ran  ( k  e.  I  |->  S ) )
64, 5syl 14 . . 3  |-  ( ( X  e.  V  /\  A. k  e.  I  S 
C_  X )  ->  |^|_ k  e.  I  S  =  |^| ran  (
k  e.  I  |->  S ) )
76ineq2d 3351 . 2  |-  ( ( X  e.  V  /\  A. k  e.  I  S 
C_  X )  -> 
( X  i^i  |^|_ k  e.  I  S
)  =  ( X  i^i  |^| ran  ( k  e.  I  |->  S ) ) )
8 intun 3890 . . 3  |-  |^| ( { X }  u.  ran  ( k  e.  I  |->  S ) )  =  ( |^| { X }  i^i  |^| ran  ( k  e.  I  |->  S ) )
9 intsng 3893 . . . . 5  |-  ( X  e.  V  ->  |^| { X }  =  X )
109adantr 276 . . . 4  |-  ( ( X  e.  V  /\  A. k  e.  I  S 
C_  X )  ->  |^| { X }  =  X )
1110ineq1d 3350 . . 3  |-  ( ( X  e.  V  /\  A. k  e.  I  S 
C_  X )  -> 
( |^| { X }  i^i  |^| ran  ( k  e.  I  |->  S ) )  =  ( X  i^i  |^| ran  ( k  e.  I  |->  S ) ) )
128, 11eqtrid 2234 . 2  |-  ( ( X  e.  V  /\  A. k  e.  I  S 
C_  X )  ->  |^| ( { X }  u.  ran  ( k  e.  I  |->  S ) )  =  ( X  i^i  |^|
ran  ( k  e.  I  |->  S ) ) )
137, 12eqtr4d 2225 1  |-  ( ( X  e.  V  /\  A. k  e.  I  S 
C_  X )  -> 
( X  i^i  |^|_ k  e.  I  S
)  =  |^| ( { X }  u.  ran  ( k  e.  I  |->  S ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2160   A.wral 2468   _Vcvv 2752    u. cun 3142    i^i cin 3143    C_ wss 3144   {csn 3607   |^|cint 3859   |^|_ciin 3902    |-> cmpt 4079   ran crn 4645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-int 3860  df-iin 3904  df-br 4019  df-opab 4080  df-mpt 4081  df-cnv 4652  df-dm 4654  df-rn 4655
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator