ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfiin3g Unicode version

Theorem dfiin3g 4937
Description: Alternate definition of indexed intersection when  B is a set. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
dfiin3g  |-  ( A. x  e.  A  B  e.  C  ->  |^|_ x  e.  A  B  =  |^| ran  ( x  e.  A  |->  B ) )

Proof of Theorem dfiin3g
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfiin2g 3960 . 2  |-  ( A. x  e.  A  B  e.  C  ->  |^|_ x  e.  A  B  =  |^| { y  |  E. x  e.  A  y  =  B } )
2 eqid 2205 . . . 4  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
32rnmpt 4927 . . 3  |-  ran  (
x  e.  A  |->  B )  =  { y  |  E. x  e.  A  y  =  B }
43inteqi 3889 . 2  |-  |^| ran  ( x  e.  A  |->  B )  =  |^| { y  |  E. x  e.  A  y  =  B }
51, 4eqtr4di 2256 1  |-  ( A. x  e.  A  B  e.  C  ->  |^|_ x  e.  A  B  =  |^| ran  ( x  e.  A  |->  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176   {cab 2191   A.wral 2484   E.wrex 2485   |^|cint 3885   |^|_ciin 3928    |-> cmpt 4106   ran crn 4677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-int 3886  df-iin 3930  df-br 4046  df-opab 4107  df-mpt 4108  df-cnv 4684  df-dm 4686  df-rn 4687
This theorem is referenced by:  dfiin3  4939  riinint  4940
  Copyright terms: Public domain W3C validator