ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfiin3g Unicode version

Theorem dfiin3g 4804
Description: Alternate definition of indexed intersection when  B is a set. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
dfiin3g  |-  ( A. x  e.  A  B  e.  C  ->  |^|_ x  e.  A  B  =  |^| ran  ( x  e.  A  |->  B ) )

Proof of Theorem dfiin3g
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfiin2g 3853 . 2  |-  ( A. x  e.  A  B  e.  C  ->  |^|_ x  e.  A  B  =  |^| { y  |  E. x  e.  A  y  =  B } )
2 eqid 2140 . . . 4  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
32rnmpt 4794 . . 3  |-  ran  (
x  e.  A  |->  B )  =  { y  |  E. x  e.  A  y  =  B }
43inteqi 3782 . 2  |-  |^| ran  ( x  e.  A  |->  B )  =  |^| { y  |  E. x  e.  A  y  =  B }
51, 4eqtr4di 2191 1  |-  ( A. x  e.  A  B  e.  C  ->  |^|_ x  e.  A  B  =  |^| ran  ( x  e.  A  |->  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1332    e. wcel 1481   {cab 2126   A.wral 2417   E.wrex 2418   |^|cint 3778   |^|_ciin 3821    |-> cmpt 3996   ran crn 4547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4053  ax-pow 4105  ax-pr 4138
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-un 3079  df-in 3081  df-ss 3088  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-int 3779  df-iin 3823  df-br 3937  df-opab 3997  df-mpt 3998  df-cnv 4554  df-dm 4556  df-rn 4557
This theorem is referenced by:  dfiin3  4806  riinint  4807
  Copyright terms: Public domain W3C validator