ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inab Unicode version

Theorem inab 3401
Description: Intersection of two class abstractions. (Contributed by NM, 29-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
inab  |-  ( { x  |  ph }  i^i  { x  |  ps } )  =  {
x  |  ( ph  /\ 
ps ) }

Proof of Theorem inab
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 sban 1953 . . 3  |-  ( [ y  /  x ]
( ph  /\  ps )  <->  ( [ y  /  x ] ph  /\  [ y  /  x ] ps ) )
2 df-clab 2162 . . 3  |-  ( y  e.  { x  |  ( ph  /\  ps ) }  <->  [ y  /  x ] ( ph  /\  ps ) )
3 df-clab 2162 . . . 4  |-  ( y  e.  { x  | 
ph }  <->  [ y  /  x ] ph )
4 df-clab 2162 . . . 4  |-  ( y  e.  { x  |  ps }  <->  [ y  /  x ] ps )
53, 4anbi12i 460 . . 3  |-  ( ( y  e.  { x  |  ph }  /\  y  e.  { x  |  ps } )  <->  ( [
y  /  x ] ph  /\  [ y  /  x ] ps ) )
61, 2, 53bitr4ri 213 . 2  |-  ( ( y  e.  { x  |  ph }  /\  y  e.  { x  |  ps } )  <->  y  e.  { x  |  ( ph  /\ 
ps ) } )
76ineqri 3326 1  |-  ( { x  |  ph }  i^i  { x  |  ps } )  =  {
x  |  ( ph  /\ 
ps ) }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1353   [wsb 1760    e. wcel 2146   {cab 2161    i^i cin 3126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-v 2737  df-in 3133
This theorem is referenced by:  inrab  3405  inrab2  3406  dfrab2  3408  dfrab3  3409  imainlem  5289  imain  5290  ssenen  6841
  Copyright terms: Public domain W3C validator