Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > inab | Unicode version |
Description: Intersection of two class abstractions. (Contributed by NM, 29-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
inab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sban 1943 | . . 3 | |
2 | df-clab 2152 | . . 3 | |
3 | df-clab 2152 | . . . 4 | |
4 | df-clab 2152 | . . . 4 | |
5 | 3, 4 | anbi12i 456 | . . 3 |
6 | 1, 2, 5 | 3bitr4ri 212 | . 2 |
7 | 6 | ineqri 3315 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wceq 1343 wsb 1750 wcel 2136 cab 2151 cin 3115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-in 3122 |
This theorem is referenced by: inrab 3394 inrab2 3395 dfrab2 3397 dfrab3 3398 imainlem 5269 imain 5270 ssenen 6817 |
Copyright terms: Public domain | W3C validator |