ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inab Unicode version

Theorem inab 3390
Description: Intersection of two class abstractions. (Contributed by NM, 29-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
inab  |-  ( { x  |  ph }  i^i  { x  |  ps } )  =  {
x  |  ( ph  /\ 
ps ) }

Proof of Theorem inab
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 sban 1943 . . 3  |-  ( [ y  /  x ]
( ph  /\  ps )  <->  ( [ y  /  x ] ph  /\  [ y  /  x ] ps ) )
2 df-clab 2152 . . 3  |-  ( y  e.  { x  |  ( ph  /\  ps ) }  <->  [ y  /  x ] ( ph  /\  ps ) )
3 df-clab 2152 . . . 4  |-  ( y  e.  { x  | 
ph }  <->  [ y  /  x ] ph )
4 df-clab 2152 . . . 4  |-  ( y  e.  { x  |  ps }  <->  [ y  /  x ] ps )
53, 4anbi12i 456 . . 3  |-  ( ( y  e.  { x  |  ph }  /\  y  e.  { x  |  ps } )  <->  ( [
y  /  x ] ph  /\  [ y  /  x ] ps ) )
61, 2, 53bitr4ri 212 . 2  |-  ( ( y  e.  { x  |  ph }  /\  y  e.  { x  |  ps } )  <->  y  e.  { x  |  ( ph  /\ 
ps ) } )
76ineqri 3315 1  |-  ( { x  |  ph }  i^i  { x  |  ps } )  =  {
x  |  ( ph  /\ 
ps ) }
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1343   [wsb 1750    e. wcel 2136   {cab 2151    i^i cin 3115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-in 3122
This theorem is referenced by:  inrab  3394  inrab2  3395  dfrab2  3397  dfrab3  3398  imainlem  5269  imain  5270  ssenen  6817
  Copyright terms: Public domain W3C validator