Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > inab | Unicode version |
Description: Intersection of two class abstractions. (Contributed by NM, 29-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
inab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sban 1953 | . . 3 | |
2 | df-clab 2162 | . . 3 | |
3 | df-clab 2162 | . . . 4 | |
4 | df-clab 2162 | . . . 4 | |
5 | 3, 4 | anbi12i 460 | . . 3 |
6 | 1, 2, 5 | 3bitr4ri 213 | . 2 |
7 | 6 | ineqri 3326 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 104 wceq 1353 wsb 1760 wcel 2146 cab 2161 cin 3126 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-in 3133 |
This theorem is referenced by: inrab 3405 inrab2 3406 dfrab2 3408 dfrab3 3409 imainlem 5289 imain 5290 ssenen 6841 |
Copyright terms: Public domain | W3C validator |