ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfse2 Unicode version

Theorem dfse2 5038
Description: Alternate definition of set-like relation. (Contributed by Mario Carneiro, 23-Jun-2015.)
Assertion
Ref Expression
dfse2  |-  ( R Se  A  <->  A. x  e.  A  ( A  i^i  ( `' R " { x } ) )  e. 
_V )
Distinct variable groups:    x, A    x, R

Proof of Theorem dfse2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-se 4364 . 2  |-  ( R Se  A  <->  A. x  e.  A  { y  e.  A  |  y R x }  e.  _V )
2 dfrab3 3435 . . . . 5  |-  { y  e.  A  |  y R x }  =  ( A  i^i  { y  |  y R x } )
3 vex 2763 . . . . . . 7  |-  x  e. 
_V
4 iniseg 5037 . . . . . . 7  |-  ( x  e.  _V  ->  ( `' R " { x } )  =  {
y  |  y R x } )
53, 4ax-mp 5 . . . . . 6  |-  ( `' R " { x } )  =  {
y  |  y R x }
65ineq2i 3357 . . . . 5  |-  ( A  i^i  ( `' R " { x } ) )  =  ( A  i^i  { y  |  y R x }
)
72, 6eqtr4i 2217 . . . 4  |-  { y  e.  A  |  y R x }  =  ( A  i^i  ( `' R " { x } ) )
87eleq1i 2259 . . 3  |-  ( { y  e.  A  | 
y R x }  e.  _V  <->  ( A  i^i  ( `' R " { x } ) )  e. 
_V )
98ralbii 2500 . 2  |-  ( A. x  e.  A  {
y  e.  A  | 
y R x }  e.  _V  <->  A. x  e.  A  ( A  i^i  ( `' R " { x } ) )  e. 
_V )
101, 9bitri 184 1  |-  ( R Se  A  <->  A. x  e.  A  ( A  i^i  ( `' R " { x } ) )  e. 
_V )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364    e. wcel 2164   {cab 2179   A.wral 2472   {crab 2476   _Vcvv 2760    i^i cin 3152   {csn 3618   class class class wbr 4029   Se wse 4360   `'ccnv 4658   "cima 4662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-se 4364  df-xp 4665  df-cnv 4667  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672
This theorem is referenced by:  isoselem  5863
  Copyright terms: Public domain W3C validator