ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfse2 Unicode version

Theorem dfse2 4792
Description: Alternate definition of set-like relation. (Contributed by Mario Carneiro, 23-Jun-2015.)
Assertion
Ref Expression
dfse2  |-  ( R Se  A  <->  A. x  e.  A  ( A  i^i  ( `' R " { x } ) )  e. 
_V )
Distinct variable groups:    x, A    x, R

Proof of Theorem dfse2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-se 4151 . 2  |-  ( R Se  A  <->  A. x  e.  A  { y  e.  A  |  y R x }  e.  _V )
2 dfrab3 3273 . . . . 5  |-  { y  e.  A  |  y R x }  =  ( A  i^i  { y  |  y R x } )
3 vex 2622 . . . . . . 7  |-  x  e. 
_V
4 iniseg 4791 . . . . . . 7  |-  ( x  e.  _V  ->  ( `' R " { x } )  =  {
y  |  y R x } )
53, 4ax-mp 7 . . . . . 6  |-  ( `' R " { x } )  =  {
y  |  y R x }
65ineq2i 3196 . . . . 5  |-  ( A  i^i  ( `' R " { x } ) )  =  ( A  i^i  { y  |  y R x }
)
72, 6eqtr4i 2111 . . . 4  |-  { y  e.  A  |  y R x }  =  ( A  i^i  ( `' R " { x } ) )
87eleq1i 2153 . . 3  |-  ( { y  e.  A  | 
y R x }  e.  _V  <->  ( A  i^i  ( `' R " { x } ) )  e. 
_V )
98ralbii 2384 . 2  |-  ( A. x  e.  A  {
y  e.  A  | 
y R x }  e.  _V  <->  A. x  e.  A  ( A  i^i  ( `' R " { x } ) )  e. 
_V )
101, 9bitri 182 1  |-  ( R Se  A  <->  A. x  e.  A  ( A  i^i  ( `' R " { x } ) )  e. 
_V )
Colors of variables: wff set class
Syntax hints:    <-> wb 103    = wceq 1289    e. wcel 1438   {cab 2074   A.wral 2359   {crab 2363   _Vcvv 2619    i^i cin 2996   {csn 3441   class class class wbr 3837   Se wse 4147   `'ccnv 4427   "cima 4431
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-rab 2368  df-v 2621  df-sbc 2839  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-br 3838  df-opab 3892  df-se 4151  df-xp 4434  df-cnv 4436  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441
This theorem is referenced by:  isoselem  5581
  Copyright terms: Public domain W3C validator