ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfrab2 Unicode version

Theorem dfrab2 3438
Description: Alternate definition of restricted class abstraction. (Contributed by NM, 20-Sep-2003.)
Assertion
Ref Expression
dfrab2  |-  { x  e.  A  |  ph }  =  ( { x  |  ph }  i^i  A
)
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem dfrab2
StepHypRef Expression
1 df-rab 2484 . 2  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
2 inab 3431 . . 3  |-  ( { x  |  x  e.  A }  i^i  {
x  |  ph }
)  =  { x  |  ( x  e.  A  /\  ph ) }
3 abid2 2317 . . . 4  |-  { x  |  x  e.  A }  =  A
43ineq1i 3360 . . 3  |-  ( { x  |  x  e.  A }  i^i  {
x  |  ph }
)  =  ( A  i^i  { x  | 
ph } )
52, 4eqtr3i 2219 . 2  |-  { x  |  ( x  e.  A  /\  ph ) }  =  ( A  i^i  { x  |  ph } )
6 incom 3355 . 2  |-  ( A  i^i  { x  | 
ph } )  =  ( { x  | 
ph }  i^i  A
)
71, 5, 63eqtri 2221 1  |-  { x  e.  A  |  ph }  =  ( { x  |  ph }  i^i  A
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364    e. wcel 2167   {cab 2182   {crab 2479    i^i cin 3156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rab 2484  df-v 2765  df-in 3163
This theorem is referenced by:  minmax  11395  xrminmax  11430
  Copyright terms: Public domain W3C validator