ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfrab3 GIF version

Theorem dfrab3 3398
Description: Alternate definition of restricted class abstraction. (Contributed by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
dfrab3 {𝑥𝐴𝜑} = (𝐴 ∩ {𝑥𝜑})
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem dfrab3
StepHypRef Expression
1 df-rab 2453 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
2 inab 3390 . 2 ({𝑥𝑥𝐴} ∩ {𝑥𝜑}) = {𝑥 ∣ (𝑥𝐴𝜑)}
3 abid2 2287 . . 3 {𝑥𝑥𝐴} = 𝐴
43ineq1i 3319 . 2 ({𝑥𝑥𝐴} ∩ {𝑥𝜑}) = (𝐴 ∩ {𝑥𝜑})
51, 2, 43eqtr2i 2192 1 {𝑥𝐴𝜑} = (𝐴 ∩ {𝑥𝜑})
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1343  wcel 2136  {cab 2151  {crab 2448  cin 3115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rab 2453  df-v 2728  df-in 3122
This theorem is referenced by:  notrab  3399  dfrab3ss  3400  dfif3  3533  dfse2  4977
  Copyright terms: Public domain W3C validator