ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfrab3 GIF version

Theorem dfrab3 3448
Description: Alternate definition of restricted class abstraction. (Contributed by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
dfrab3 {𝑥𝐴𝜑} = (𝐴 ∩ {𝑥𝜑})
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem dfrab3
StepHypRef Expression
1 df-rab 2492 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
2 inab 3440 . 2 ({𝑥𝑥𝐴} ∩ {𝑥𝜑}) = {𝑥 ∣ (𝑥𝐴𝜑)}
3 abid2 2325 . . 3 {𝑥𝑥𝐴} = 𝐴
43ineq1i 3369 . 2 ({𝑥𝑥𝐴} ∩ {𝑥𝜑}) = (𝐴 ∩ {𝑥𝜑})
51, 2, 43eqtr2i 2231 1 {𝑥𝐴𝜑} = (𝐴 ∩ {𝑥𝜑})
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1372  wcel 2175  {cab 2190  {crab 2487  cin 3164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-rab 2492  df-v 2773  df-in 3171
This theorem is referenced by:  notrab  3449  dfrab3ss  3450  dfif3  3583  dfse2  5052
  Copyright terms: Public domain W3C validator