ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infiexmid Unicode version

Theorem infiexmid 6779
Description: If the intersection of any finite set and any other set is finite, excluded middle follows. (Contributed by Jim Kingdon, 5-Feb-2022.)
Hypothesis
Ref Expression
infiexmid.1  |-  ( x  e.  Fin  ->  (
x  i^i  y )  e.  Fin )
Assertion
Ref Expression
infiexmid  |-  ( ph  \/  -.  ph )
Distinct variable group:    ph, x, y

Proof of Theorem infiexmid
StepHypRef Expression
1 dfss1 3285 . . . . . 6  |-  ( y 
C_  x  <->  ( x  i^i  y )  =  y )
21biimpi 119 . . . . 5  |-  ( y 
C_  x  ->  (
x  i^i  y )  =  y )
32adantl 275 . . . 4  |-  ( ( x  e.  Fin  /\  y  C_  x )  -> 
( x  i^i  y
)  =  y )
4 infiexmid.1 . . . . 5  |-  ( x  e.  Fin  ->  (
x  i^i  y )  e.  Fin )
54adantr 274 . . . 4  |-  ( ( x  e.  Fin  /\  y  C_  x )  -> 
( x  i^i  y
)  e.  Fin )
63, 5eqeltrrd 2218 . . 3  |-  ( ( x  e.  Fin  /\  y  C_  x )  -> 
y  e.  Fin )
76gen2 1427 . 2  |-  A. x A. y ( ( x  e.  Fin  /\  y  C_  x )  ->  y  e.  Fin )
87ssfiexmid 6778 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698    = wceq 1332    e. wcel 1481    i^i cin 3075    C_ wss 3076   Fincfn 6642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-id 4223  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-1o 6321  df-er 6437  df-en 6643  df-fin 6645
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator