ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infiexmid Unicode version

Theorem infiexmid 6855
Description: If the intersection of any finite set and any other set is finite, excluded middle follows. (Contributed by Jim Kingdon, 5-Feb-2022.)
Hypothesis
Ref Expression
infiexmid.1  |-  ( x  e.  Fin  ->  (
x  i^i  y )  e.  Fin )
Assertion
Ref Expression
infiexmid  |-  ( ph  \/  -.  ph )
Distinct variable group:    ph, x, y

Proof of Theorem infiexmid
StepHypRef Expression
1 dfss1 3331 . . . . . 6  |-  ( y 
C_  x  <->  ( x  i^i  y )  =  y )
21biimpi 119 . . . . 5  |-  ( y 
C_  x  ->  (
x  i^i  y )  =  y )
32adantl 275 . . . 4  |-  ( ( x  e.  Fin  /\  y  C_  x )  -> 
( x  i^i  y
)  =  y )
4 infiexmid.1 . . . . 5  |-  ( x  e.  Fin  ->  (
x  i^i  y )  e.  Fin )
54adantr 274 . . . 4  |-  ( ( x  e.  Fin  /\  y  C_  x )  -> 
( x  i^i  y
)  e.  Fin )
63, 5eqeltrrd 2248 . . 3  |-  ( ( x  e.  Fin  /\  y  C_  x )  -> 
y  e.  Fin )
76gen2 1443 . 2  |-  A. x A. y ( ( x  e.  Fin  /\  y  C_  x )  ->  y  e.  Fin )
87ssfiexmid 6854 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 703    = wceq 1348    e. wcel 2141    i^i cin 3120    C_ wss 3121   Fincfn 6718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-id 4278  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-1o 6395  df-er 6513  df-en 6719  df-fin 6721
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator