| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > onintexmid | Unicode version | ||
| Description: If the intersection (infimum) of an inhabited class of ordinal numbers belongs to the class, excluded middle follows. The hypothesis would be provable given excluded middle. (Contributed by Mario Carneiro and Jim Kingdon, 29-Aug-2021.) |
| Ref | Expression |
|---|---|
| onintexmid.onint |
|
| Ref | Expression |
|---|---|
| onintexmid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prssi 3781 |
. . . . . 6
| |
| 2 | prmg 3744 |
. . . . . . 7
| |
| 3 | 2 | adantr 276 |
. . . . . 6
|
| 4 | zfpair2 4244 |
. . . . . . 7
| |
| 5 | sseq1 3207 |
. . . . . . . . 9
| |
| 6 | eleq2 2260 |
. . . . . . . . . 10
| |
| 7 | 6 | exbidv 1839 |
. . . . . . . . 9
|
| 8 | 5, 7 | anbi12d 473 |
. . . . . . . 8
|
| 9 | inteq 3878 |
. . . . . . . . 9
| |
| 10 | id 19 |
. . . . . . . . 9
| |
| 11 | 9, 10 | eleq12d 2267 |
. . . . . . . 8
|
| 12 | 8, 11 | imbi12d 234 |
. . . . . . 7
|
| 13 | onintexmid.onint |
. . . . . . 7
| |
| 14 | 4, 12, 13 | vtocl 2818 |
. . . . . 6
|
| 15 | 1, 3, 14 | syl2anc 411 |
. . . . 5
|
| 16 | elpri 3646 |
. . . . 5
| |
| 17 | 15, 16 | syl 14 |
. . . 4
|
| 18 | incom 3356 |
. . . . . . 7
| |
| 19 | 18 | eqeq1i 2204 |
. . . . . 6
|
| 20 | dfss1 3368 |
. . . . . 6
| |
| 21 | vex 2766 |
. . . . . . . 8
| |
| 22 | vex 2766 |
. . . . . . . 8
| |
| 23 | 21, 22 | intpr 3907 |
. . . . . . 7
|
| 24 | 23 | eqeq1i 2204 |
. . . . . 6
|
| 25 | 19, 20, 24 | 3bitr4ri 213 |
. . . . 5
|
| 26 | 23 | eqeq1i 2204 |
. . . . . 6
|
| 27 | dfss1 3368 |
. . . . . 6
| |
| 28 | 26, 27 | bitr4i 187 |
. . . . 5
|
| 29 | 25, 28 | orbi12i 765 |
. . . 4
|
| 30 | 17, 29 | sylib 122 |
. . 3
|
| 31 | 30 | rgen2a 2551 |
. 2
|
| 32 | 31 | ordtri2or2exmid 4608 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-uni 3841 df-int 3876 df-tr 4133 df-iord 4402 df-on 4404 df-suc 4407 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |