Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > onintexmid | Unicode version |
Description: If the intersection (infimum) of an inhabited class of ordinal numbers belongs to the class, excluded middle follows. The hypothesis would be provable given excluded middle. (Contributed by Mario Carneiro and Jim Kingdon, 29-Aug-2021.) |
Ref | Expression |
---|---|
onintexmid.onint |
Ref | Expression |
---|---|
onintexmid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prssi 3731 | . . . . . 6 | |
2 | prmg 3697 | . . . . . . 7 | |
3 | 2 | adantr 274 | . . . . . 6 |
4 | zfpair2 4188 | . . . . . . 7 | |
5 | sseq1 3165 | . . . . . . . . 9 | |
6 | eleq2 2230 | . . . . . . . . . 10 | |
7 | 6 | exbidv 1813 | . . . . . . . . 9 |
8 | 5, 7 | anbi12d 465 | . . . . . . . 8 |
9 | inteq 3827 | . . . . . . . . 9 | |
10 | id 19 | . . . . . . . . 9 | |
11 | 9, 10 | eleq12d 2237 | . . . . . . . 8 |
12 | 8, 11 | imbi12d 233 | . . . . . . 7 |
13 | onintexmid.onint | . . . . . . 7 | |
14 | 4, 12, 13 | vtocl 2780 | . . . . . 6 |
15 | 1, 3, 14 | syl2anc 409 | . . . . 5 |
16 | elpri 3599 | . . . . 5 | |
17 | 15, 16 | syl 14 | . . . 4 |
18 | incom 3314 | . . . . . . 7 | |
19 | 18 | eqeq1i 2173 | . . . . . 6 |
20 | dfss1 3326 | . . . . . 6 | |
21 | vex 2729 | . . . . . . . 8 | |
22 | vex 2729 | . . . . . . . 8 | |
23 | 21, 22 | intpr 3856 | . . . . . . 7 |
24 | 23 | eqeq1i 2173 | . . . . . 6 |
25 | 19, 20, 24 | 3bitr4ri 212 | . . . . 5 |
26 | 23 | eqeq1i 2173 | . . . . . 6 |
27 | dfss1 3326 | . . . . . 6 | |
28 | 26, 27 | bitr4i 186 | . . . . 5 |
29 | 25, 28 | orbi12i 754 | . . . 4 |
30 | 17, 29 | sylib 121 | . . 3 |
31 | 30 | rgen2a 2520 | . 2 |
32 | 31 | ordtri2or2exmid 4548 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 698 wceq 1343 wex 1480 wcel 2136 cin 3115 wss 3116 cpr 3577 cint 3824 con0 4341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-int 3825 df-tr 4081 df-iord 4344 df-on 4346 df-suc 4349 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |