ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onintexmid Unicode version

Theorem onintexmid 4534
Description: If the intersection (infimum) of an inhabited class of ordinal numbers belongs to the class, excluded middle follows. The hypothesis would be provable given excluded middle. (Contributed by Mario Carneiro and Jim Kingdon, 29-Aug-2021.)
Hypothesis
Ref Expression
onintexmid.onint  |-  ( ( y  C_  On  /\  E. x  x  e.  y
)  ->  |^| y  e.  y )
Assertion
Ref Expression
onintexmid  |-  ( ph  \/  -.  ph )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem onintexmid
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prssi 3716 . . . . . 6  |-  ( ( u  e.  On  /\  v  e.  On )  ->  { u ,  v }  C_  On )
2 prmg 3682 . . . . . . 7  |-  ( u  e.  On  ->  E. x  x  e.  { u ,  v } )
32adantr 274 . . . . . 6  |-  ( ( u  e.  On  /\  v  e.  On )  ->  E. x  x  e. 
{ u ,  v } )
4 zfpair2 4172 . . . . . . 7  |-  { u ,  v }  e.  _V
5 sseq1 3151 . . . . . . . . 9  |-  ( y  =  { u ,  v }  ->  (
y  C_  On  <->  { u ,  v }  C_  On ) )
6 eleq2 2221 . . . . . . . . . 10  |-  ( y  =  { u ,  v }  ->  (
x  e.  y  <->  x  e.  { u ,  v } ) )
76exbidv 1805 . . . . . . . . 9  |-  ( y  =  { u ,  v }  ->  ( E. x  x  e.  y 
<->  E. x  x  e. 
{ u ,  v } ) )
85, 7anbi12d 465 . . . . . . . 8  |-  ( y  =  { u ,  v }  ->  (
( y  C_  On  /\ 
E. x  x  e.  y )  <->  ( {
u ,  v } 
C_  On  /\  E. x  x  e.  { u ,  v } ) ) )
9 inteq 3812 . . . . . . . . 9  |-  ( y  =  { u ,  v }  ->  |^| y  =  |^| { u ,  v } )
10 id 19 . . . . . . . . 9  |-  ( y  =  { u ,  v }  ->  y  =  { u ,  v } )
119, 10eleq12d 2228 . . . . . . . 8  |-  ( y  =  { u ,  v }  ->  ( |^| y  e.  y  <->  |^|
{ u ,  v }  e.  { u ,  v } ) )
128, 11imbi12d 233 . . . . . . 7  |-  ( y  =  { u ,  v }  ->  (
( ( y  C_  On  /\  E. x  x  e.  y )  ->  |^| y  e.  y
)  <->  ( ( { u ,  v } 
C_  On  /\  E. x  x  e.  { u ,  v } )  ->  |^| { u ,  v }  e.  {
u ,  v } ) ) )
13 onintexmid.onint . . . . . . 7  |-  ( ( y  C_  On  /\  E. x  x  e.  y
)  ->  |^| y  e.  y )
144, 12, 13vtocl 2766 . . . . . 6  |-  ( ( { u ,  v }  C_  On  /\  E. x  x  e.  { u ,  v } )  ->  |^| { u ,  v }  e.  {
u ,  v } )
151, 3, 14syl2anc 409 . . . . 5  |-  ( ( u  e.  On  /\  v  e.  On )  ->  |^| { u ,  v }  e.  {
u ,  v } )
16 elpri 3584 . . . . 5  |-  ( |^| { u ,  v }  e.  { u ,  v }  ->  ( |^| { u ,  v }  =  u  \/ 
|^| { u ,  v }  =  v ) )
1715, 16syl 14 . . . 4  |-  ( ( u  e.  On  /\  v  e.  On )  ->  ( |^| { u ,  v }  =  u  \/  |^| { u ,  v }  =  v ) )
18 incom 3300 . . . . . . 7  |-  ( v  i^i  u )  =  ( u  i^i  v
)
1918eqeq1i 2165 . . . . . 6  |-  ( ( v  i^i  u )  =  u  <->  ( u  i^i  v )  =  u )
20 dfss1 3312 . . . . . 6  |-  ( u 
C_  v  <->  ( v  i^i  u )  =  u )
21 vex 2715 . . . . . . . 8  |-  u  e. 
_V
22 vex 2715 . . . . . . . 8  |-  v  e. 
_V
2321, 22intpr 3841 . . . . . . 7  |-  |^| { u ,  v }  =  ( u  i^i  v
)
2423eqeq1i 2165 . . . . . 6  |-  ( |^| { u ,  v }  =  u  <->  ( u  i^i  v )  =  u )
2519, 20, 243bitr4ri 212 . . . . 5  |-  ( |^| { u ,  v }  =  u  <->  u  C_  v
)
2623eqeq1i 2165 . . . . . 6  |-  ( |^| { u ,  v }  =  v  <->  ( u  i^i  v )  =  v )
27 dfss1 3312 . . . . . 6  |-  ( v 
C_  u  <->  ( u  i^i  v )  =  v )
2826, 27bitr4i 186 . . . . 5  |-  ( |^| { u ,  v }  =  v  <->  v  C_  u )
2925, 28orbi12i 754 . . . 4  |-  ( (
|^| { u ,  v }  =  u  \/ 
|^| { u ,  v }  =  v )  <-> 
( u  C_  v  \/  v  C_  u ) )
3017, 29sylib 121 . . 3  |-  ( ( u  e.  On  /\  v  e.  On )  ->  ( u  C_  v  \/  v  C_  u ) )
3130rgen2a 2511 . 2  |-  A. u  e.  On  A. v  e.  On  ( u  C_  v  \/  v  C_  u )
3231ordtri2or2exmid 4532 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698    = wceq 1335   E.wex 1472    e. wcel 2128    i^i cin 3101    C_ wss 3102   {cpr 3562   |^|cint 3809   Oncon0 4325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4084  ax-nul 4092  ax-pow 4137  ax-pr 4171  ax-un 4395  ax-setind 4498
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3396  df-pw 3546  df-sn 3567  df-pr 3568  df-uni 3775  df-int 3810  df-tr 4065  df-iord 4328  df-on 4330  df-suc 4333
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator