Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > onintexmid | Unicode version |
Description: If the intersection (infimum) of an inhabited class of ordinal numbers belongs to the class, excluded middle follows. The hypothesis would be provable given excluded middle. (Contributed by Mario Carneiro and Jim Kingdon, 29-Aug-2021.) |
Ref | Expression |
---|---|
onintexmid.onint |
Ref | Expression |
---|---|
onintexmid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prssi 3738 | . . . . . 6 | |
2 | prmg 3704 | . . . . . . 7 | |
3 | 2 | adantr 274 | . . . . . 6 |
4 | zfpair2 4195 | . . . . . . 7 | |
5 | sseq1 3170 | . . . . . . . . 9 | |
6 | eleq2 2234 | . . . . . . . . . 10 | |
7 | 6 | exbidv 1818 | . . . . . . . . 9 |
8 | 5, 7 | anbi12d 470 | . . . . . . . 8 |
9 | inteq 3834 | . . . . . . . . 9 | |
10 | id 19 | . . . . . . . . 9 | |
11 | 9, 10 | eleq12d 2241 | . . . . . . . 8 |
12 | 8, 11 | imbi12d 233 | . . . . . . 7 |
13 | onintexmid.onint | . . . . . . 7 | |
14 | 4, 12, 13 | vtocl 2784 | . . . . . 6 |
15 | 1, 3, 14 | syl2anc 409 | . . . . 5 |
16 | elpri 3606 | . . . . 5 | |
17 | 15, 16 | syl 14 | . . . 4 |
18 | incom 3319 | . . . . . . 7 | |
19 | 18 | eqeq1i 2178 | . . . . . 6 |
20 | dfss1 3331 | . . . . . 6 | |
21 | vex 2733 | . . . . . . . 8 | |
22 | vex 2733 | . . . . . . . 8 | |
23 | 21, 22 | intpr 3863 | . . . . . . 7 |
24 | 23 | eqeq1i 2178 | . . . . . 6 |
25 | 19, 20, 24 | 3bitr4ri 212 | . . . . 5 |
26 | 23 | eqeq1i 2178 | . . . . . 6 |
27 | dfss1 3331 | . . . . . 6 | |
28 | 26, 27 | bitr4i 186 | . . . . 5 |
29 | 25, 28 | orbi12i 759 | . . . 4 |
30 | 17, 29 | sylib 121 | . . 3 |
31 | 30 | rgen2a 2524 | . 2 |
32 | 31 | ordtri2or2exmid 4555 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 703 wceq 1348 wex 1485 wcel 2141 cin 3120 wss 3121 cpr 3584 cint 3831 con0 4348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-uni 3797 df-int 3832 df-tr 4088 df-iord 4351 df-on 4353 df-suc 4356 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |