| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > onintexmid | Unicode version | ||
| Description: If the intersection (infimum) of an inhabited class of ordinal numbers belongs to the class, excluded middle follows. The hypothesis would be provable given excluded middle. (Contributed by Mario Carneiro and Jim Kingdon, 29-Aug-2021.) |
| Ref | Expression |
|---|---|
| onintexmid.onint |
|
| Ref | Expression |
|---|---|
| onintexmid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prssi 3826 |
. . . . . 6
| |
| 2 | prmg 3789 |
. . . . . . 7
| |
| 3 | 2 | adantr 276 |
. . . . . 6
|
| 4 | zfpair2 4294 |
. . . . . . 7
| |
| 5 | sseq1 3247 |
. . . . . . . . 9
| |
| 6 | eleq2 2293 |
. . . . . . . . . 10
| |
| 7 | 6 | exbidv 1871 |
. . . . . . . . 9
|
| 8 | 5, 7 | anbi12d 473 |
. . . . . . . 8
|
| 9 | inteq 3926 |
. . . . . . . . 9
| |
| 10 | id 19 |
. . . . . . . . 9
| |
| 11 | 9, 10 | eleq12d 2300 |
. . . . . . . 8
|
| 12 | 8, 11 | imbi12d 234 |
. . . . . . 7
|
| 13 | onintexmid.onint |
. . . . . . 7
| |
| 14 | 4, 12, 13 | vtocl 2855 |
. . . . . 6
|
| 15 | 1, 3, 14 | syl2anc 411 |
. . . . 5
|
| 16 | elpri 3689 |
. . . . 5
| |
| 17 | 15, 16 | syl 14 |
. . . 4
|
| 18 | incom 3396 |
. . . . . . 7
| |
| 19 | 18 | eqeq1i 2237 |
. . . . . 6
|
| 20 | dfss1 3408 |
. . . . . 6
| |
| 21 | vex 2802 |
. . . . . . . 8
| |
| 22 | vex 2802 |
. . . . . . . 8
| |
| 23 | 21, 22 | intpr 3955 |
. . . . . . 7
|
| 24 | 23 | eqeq1i 2237 |
. . . . . 6
|
| 25 | 19, 20, 24 | 3bitr4ri 213 |
. . . . 5
|
| 26 | 23 | eqeq1i 2237 |
. . . . . 6
|
| 27 | dfss1 3408 |
. . . . . 6
| |
| 28 | 26, 27 | bitr4i 187 |
. . . . 5
|
| 29 | 25, 28 | orbi12i 769 |
. . . 4
|
| 30 | 17, 29 | sylib 122 |
. . 3
|
| 31 | 30 | rgen2a 2584 |
. 2
|
| 32 | 31 | ordtri2or2exmid 4663 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3889 df-int 3924 df-tr 4183 df-iord 4457 df-on 4459 df-suc 4462 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |