ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onintexmid Unicode version

Theorem onintexmid 4626
Description: If the intersection (infimum) of an inhabited class of ordinal numbers belongs to the class, excluded middle follows. The hypothesis would be provable given excluded middle. (Contributed by Mario Carneiro and Jim Kingdon, 29-Aug-2021.)
Hypothesis
Ref Expression
onintexmid.onint  |-  ( ( y  C_  On  /\  E. x  x  e.  y
)  ->  |^| y  e.  y )
Assertion
Ref Expression
onintexmid  |-  ( ph  \/  -.  ph )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem onintexmid
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prssi 3794 . . . . . 6  |-  ( ( u  e.  On  /\  v  e.  On )  ->  { u ,  v }  C_  On )
2 prmg 3757 . . . . . . 7  |-  ( u  e.  On  ->  E. x  x  e.  { u ,  v } )
32adantr 276 . . . . . 6  |-  ( ( u  e.  On  /\  v  e.  On )  ->  E. x  x  e. 
{ u ,  v } )
4 zfpair2 4259 . . . . . . 7  |-  { u ,  v }  e.  _V
5 sseq1 3218 . . . . . . . . 9  |-  ( y  =  { u ,  v }  ->  (
y  C_  On  <->  { u ,  v }  C_  On ) )
6 eleq2 2270 . . . . . . . . . 10  |-  ( y  =  { u ,  v }  ->  (
x  e.  y  <->  x  e.  { u ,  v } ) )
76exbidv 1849 . . . . . . . . 9  |-  ( y  =  { u ,  v }  ->  ( E. x  x  e.  y 
<->  E. x  x  e. 
{ u ,  v } ) )
85, 7anbi12d 473 . . . . . . . 8  |-  ( y  =  { u ,  v }  ->  (
( y  C_  On  /\ 
E. x  x  e.  y )  <->  ( {
u ,  v } 
C_  On  /\  E. x  x  e.  { u ,  v } ) ) )
9 inteq 3891 . . . . . . . . 9  |-  ( y  =  { u ,  v }  ->  |^| y  =  |^| { u ,  v } )
10 id 19 . . . . . . . . 9  |-  ( y  =  { u ,  v }  ->  y  =  { u ,  v } )
119, 10eleq12d 2277 . . . . . . . 8  |-  ( y  =  { u ,  v }  ->  ( |^| y  e.  y  <->  |^|
{ u ,  v }  e.  { u ,  v } ) )
128, 11imbi12d 234 . . . . . . 7  |-  ( y  =  { u ,  v }  ->  (
( ( y  C_  On  /\  E. x  x  e.  y )  ->  |^| y  e.  y
)  <->  ( ( { u ,  v } 
C_  On  /\  E. x  x  e.  { u ,  v } )  ->  |^| { u ,  v }  e.  {
u ,  v } ) ) )
13 onintexmid.onint . . . . . . 7  |-  ( ( y  C_  On  /\  E. x  x  e.  y
)  ->  |^| y  e.  y )
144, 12, 13vtocl 2829 . . . . . 6  |-  ( ( { u ,  v }  C_  On  /\  E. x  x  e.  { u ,  v } )  ->  |^| { u ,  v }  e.  {
u ,  v } )
151, 3, 14syl2anc 411 . . . . 5  |-  ( ( u  e.  On  /\  v  e.  On )  ->  |^| { u ,  v }  e.  {
u ,  v } )
16 elpri 3658 . . . . 5  |-  ( |^| { u ,  v }  e.  { u ,  v }  ->  ( |^| { u ,  v }  =  u  \/ 
|^| { u ,  v }  =  v ) )
1715, 16syl 14 . . . 4  |-  ( ( u  e.  On  /\  v  e.  On )  ->  ( |^| { u ,  v }  =  u  \/  |^| { u ,  v }  =  v ) )
18 incom 3367 . . . . . . 7  |-  ( v  i^i  u )  =  ( u  i^i  v
)
1918eqeq1i 2214 . . . . . 6  |-  ( ( v  i^i  u )  =  u  <->  ( u  i^i  v )  =  u )
20 dfss1 3379 . . . . . 6  |-  ( u 
C_  v  <->  ( v  i^i  u )  =  u )
21 vex 2776 . . . . . . . 8  |-  u  e. 
_V
22 vex 2776 . . . . . . . 8  |-  v  e. 
_V
2321, 22intpr 3920 . . . . . . 7  |-  |^| { u ,  v }  =  ( u  i^i  v
)
2423eqeq1i 2214 . . . . . 6  |-  ( |^| { u ,  v }  =  u  <->  ( u  i^i  v )  =  u )
2519, 20, 243bitr4ri 213 . . . . 5  |-  ( |^| { u ,  v }  =  u  <->  u  C_  v
)
2623eqeq1i 2214 . . . . . 6  |-  ( |^| { u ,  v }  =  v  <->  ( u  i^i  v )  =  v )
27 dfss1 3379 . . . . . 6  |-  ( v 
C_  u  <->  ( u  i^i  v )  =  v )
2826, 27bitr4i 187 . . . . 5  |-  ( |^| { u ,  v }  =  v  <->  v  C_  u )
2925, 28orbi12i 766 . . . 4  |-  ( (
|^| { u ,  v }  =  u  \/ 
|^| { u ,  v }  =  v )  <-> 
( u  C_  v  \/  v  C_  u ) )
3017, 29sylib 122 . . 3  |-  ( ( u  e.  On  /\  v  e.  On )  ->  ( u  C_  v  \/  v  C_  u ) )
3130rgen2a 2561 . 2  |-  A. u  e.  On  A. v  e.  On  ( u  C_  v  \/  v  C_  u )
3231ordtri2or2exmid 4624 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 710    = wceq 1373   E.wex 1516    e. wcel 2177    i^i cin 3167    C_ wss 3168   {cpr 3636   |^|cint 3888   Oncon0 4415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-pw 3620  df-sn 3641  df-pr 3642  df-uni 3854  df-int 3889  df-tr 4148  df-iord 4418  df-on 4420  df-suc 4423
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator