| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > onintexmid | Unicode version | ||
| Description: If the intersection (infimum) of an inhabited class of ordinal numbers belongs to the class, excluded middle follows. The hypothesis would be provable given excluded middle. (Contributed by Mario Carneiro and Jim Kingdon, 29-Aug-2021.) | 
| Ref | Expression | 
|---|---|
| onintexmid.onint | 
 | 
| Ref | Expression | 
|---|---|
| onintexmid | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | prssi 3780 | 
. . . . . 6
 | |
| 2 | prmg 3743 | 
. . . . . . 7
 | |
| 3 | 2 | adantr 276 | 
. . . . . 6
 | 
| 4 | zfpair2 4243 | 
. . . . . . 7
 | |
| 5 | sseq1 3206 | 
. . . . . . . . 9
 | |
| 6 | eleq2 2260 | 
. . . . . . . . . 10
 | |
| 7 | 6 | exbidv 1839 | 
. . . . . . . . 9
 | 
| 8 | 5, 7 | anbi12d 473 | 
. . . . . . . 8
 | 
| 9 | inteq 3877 | 
. . . . . . . . 9
 | |
| 10 | id 19 | 
. . . . . . . . 9
 | |
| 11 | 9, 10 | eleq12d 2267 | 
. . . . . . . 8
 | 
| 12 | 8, 11 | imbi12d 234 | 
. . . . . . 7
 | 
| 13 | onintexmid.onint | 
. . . . . . 7
 | |
| 14 | 4, 12, 13 | vtocl 2818 | 
. . . . . 6
 | 
| 15 | 1, 3, 14 | syl2anc 411 | 
. . . . 5
 | 
| 16 | elpri 3645 | 
. . . . 5
 | |
| 17 | 15, 16 | syl 14 | 
. . . 4
 | 
| 18 | incom 3355 | 
. . . . . . 7
 | |
| 19 | 18 | eqeq1i 2204 | 
. . . . . 6
 | 
| 20 | dfss1 3367 | 
. . . . . 6
 | |
| 21 | vex 2766 | 
. . . . . . . 8
 | |
| 22 | vex 2766 | 
. . . . . . . 8
 | |
| 23 | 21, 22 | intpr 3906 | 
. . . . . . 7
 | 
| 24 | 23 | eqeq1i 2204 | 
. . . . . 6
 | 
| 25 | 19, 20, 24 | 3bitr4ri 213 | 
. . . . 5
 | 
| 26 | 23 | eqeq1i 2204 | 
. . . . . 6
 | 
| 27 | dfss1 3367 | 
. . . . . 6
 | |
| 28 | 26, 27 | bitr4i 187 | 
. . . . 5
 | 
| 29 | 25, 28 | orbi12i 765 | 
. . . 4
 | 
| 30 | 17, 29 | sylib 122 | 
. . 3
 | 
| 31 | 30 | rgen2a 2551 | 
. 2
 | 
| 32 | 31 | ordtri2or2exmid 4607 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-int 3875 df-tr 4132 df-iord 4401 df-on 4403 df-suc 4406 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |