ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onintexmid Unicode version

Theorem onintexmid 4662
Description: If the intersection (infimum) of an inhabited class of ordinal numbers belongs to the class, excluded middle follows. The hypothesis would be provable given excluded middle. (Contributed by Mario Carneiro and Jim Kingdon, 29-Aug-2021.)
Hypothesis
Ref Expression
onintexmid.onint  |-  ( ( y  C_  On  /\  E. x  x  e.  y
)  ->  |^| y  e.  y )
Assertion
Ref Expression
onintexmid  |-  ( ph  \/  -.  ph )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem onintexmid
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prssi 3825 . . . . . 6  |-  ( ( u  e.  On  /\  v  e.  On )  ->  { u ,  v }  C_  On )
2 prmg 3788 . . . . . . 7  |-  ( u  e.  On  ->  E. x  x  e.  { u ,  v } )
32adantr 276 . . . . . 6  |-  ( ( u  e.  On  /\  v  e.  On )  ->  E. x  x  e. 
{ u ,  v } )
4 zfpair2 4293 . . . . . . 7  |-  { u ,  v }  e.  _V
5 sseq1 3247 . . . . . . . . 9  |-  ( y  =  { u ,  v }  ->  (
y  C_  On  <->  { u ,  v }  C_  On ) )
6 eleq2 2293 . . . . . . . . . 10  |-  ( y  =  { u ,  v }  ->  (
x  e.  y  <->  x  e.  { u ,  v } ) )
76exbidv 1871 . . . . . . . . 9  |-  ( y  =  { u ,  v }  ->  ( E. x  x  e.  y 
<->  E. x  x  e. 
{ u ,  v } ) )
85, 7anbi12d 473 . . . . . . . 8  |-  ( y  =  { u ,  v }  ->  (
( y  C_  On  /\ 
E. x  x  e.  y )  <->  ( {
u ,  v } 
C_  On  /\  E. x  x  e.  { u ,  v } ) ) )
9 inteq 3925 . . . . . . . . 9  |-  ( y  =  { u ,  v }  ->  |^| y  =  |^| { u ,  v } )
10 id 19 . . . . . . . . 9  |-  ( y  =  { u ,  v }  ->  y  =  { u ,  v } )
119, 10eleq12d 2300 . . . . . . . 8  |-  ( y  =  { u ,  v }  ->  ( |^| y  e.  y  <->  |^|
{ u ,  v }  e.  { u ,  v } ) )
128, 11imbi12d 234 . . . . . . 7  |-  ( y  =  { u ,  v }  ->  (
( ( y  C_  On  /\  E. x  x  e.  y )  ->  |^| y  e.  y
)  <->  ( ( { u ,  v } 
C_  On  /\  E. x  x  e.  { u ,  v } )  ->  |^| { u ,  v }  e.  {
u ,  v } ) ) )
13 onintexmid.onint . . . . . . 7  |-  ( ( y  C_  On  /\  E. x  x  e.  y
)  ->  |^| y  e.  y )
144, 12, 13vtocl 2855 . . . . . 6  |-  ( ( { u ,  v }  C_  On  /\  E. x  x  e.  { u ,  v } )  ->  |^| { u ,  v }  e.  {
u ,  v } )
151, 3, 14syl2anc 411 . . . . 5  |-  ( ( u  e.  On  /\  v  e.  On )  ->  |^| { u ,  v }  e.  {
u ,  v } )
16 elpri 3689 . . . . 5  |-  ( |^| { u ,  v }  e.  { u ,  v }  ->  ( |^| { u ,  v }  =  u  \/ 
|^| { u ,  v }  =  v ) )
1715, 16syl 14 . . . 4  |-  ( ( u  e.  On  /\  v  e.  On )  ->  ( |^| { u ,  v }  =  u  \/  |^| { u ,  v }  =  v ) )
18 incom 3396 . . . . . . 7  |-  ( v  i^i  u )  =  ( u  i^i  v
)
1918eqeq1i 2237 . . . . . 6  |-  ( ( v  i^i  u )  =  u  <->  ( u  i^i  v )  =  u )
20 dfss1 3408 . . . . . 6  |-  ( u 
C_  v  <->  ( v  i^i  u )  =  u )
21 vex 2802 . . . . . . . 8  |-  u  e. 
_V
22 vex 2802 . . . . . . . 8  |-  v  e. 
_V
2321, 22intpr 3954 . . . . . . 7  |-  |^| { u ,  v }  =  ( u  i^i  v
)
2423eqeq1i 2237 . . . . . 6  |-  ( |^| { u ,  v }  =  u  <->  ( u  i^i  v )  =  u )
2519, 20, 243bitr4ri 213 . . . . 5  |-  ( |^| { u ,  v }  =  u  <->  u  C_  v
)
2623eqeq1i 2237 . . . . . 6  |-  ( |^| { u ,  v }  =  v  <->  ( u  i^i  v )  =  v )
27 dfss1 3408 . . . . . 6  |-  ( v 
C_  u  <->  ( u  i^i  v )  =  v )
2826, 27bitr4i 187 . . . . 5  |-  ( |^| { u ,  v }  =  v  <->  v  C_  u )
2925, 28orbi12i 769 . . . 4  |-  ( (
|^| { u ,  v }  =  u  \/ 
|^| { u ,  v }  =  v )  <-> 
( u  C_  v  \/  v  C_  u ) )
3017, 29sylib 122 . . 3  |-  ( ( u  e.  On  /\  v  e.  On )  ->  ( u  C_  v  \/  v  C_  u ) )
3130rgen2a 2584 . 2  |-  A. u  e.  On  A. v  e.  On  ( u  C_  v  \/  v  C_  u )
3231ordtri2or2exmid 4660 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 713    = wceq 1395   E.wex 1538    e. wcel 2200    i^i cin 3196    C_ wss 3197   {cpr 3667   |^|cint 3922   Oncon0 4451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3888  df-int 3923  df-tr 4182  df-iord 4454  df-on 4456  df-suc 4459
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator