ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onintexmid Unicode version

Theorem onintexmid 4606
Description: If the intersection (infimum) of an inhabited class of ordinal numbers belongs to the class, excluded middle follows. The hypothesis would be provable given excluded middle. (Contributed by Mario Carneiro and Jim Kingdon, 29-Aug-2021.)
Hypothesis
Ref Expression
onintexmid.onint  |-  ( ( y  C_  On  /\  E. x  x  e.  y
)  ->  |^| y  e.  y )
Assertion
Ref Expression
onintexmid  |-  ( ph  \/  -.  ph )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem onintexmid
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prssi 3777 . . . . . 6  |-  ( ( u  e.  On  /\  v  e.  On )  ->  { u ,  v }  C_  On )
2 prmg 3740 . . . . . . 7  |-  ( u  e.  On  ->  E. x  x  e.  { u ,  v } )
32adantr 276 . . . . . 6  |-  ( ( u  e.  On  /\  v  e.  On )  ->  E. x  x  e. 
{ u ,  v } )
4 zfpair2 4240 . . . . . . 7  |-  { u ,  v }  e.  _V
5 sseq1 3203 . . . . . . . . 9  |-  ( y  =  { u ,  v }  ->  (
y  C_  On  <->  { u ,  v }  C_  On ) )
6 eleq2 2257 . . . . . . . . . 10  |-  ( y  =  { u ,  v }  ->  (
x  e.  y  <->  x  e.  { u ,  v } ) )
76exbidv 1836 . . . . . . . . 9  |-  ( y  =  { u ,  v }  ->  ( E. x  x  e.  y 
<->  E. x  x  e. 
{ u ,  v } ) )
85, 7anbi12d 473 . . . . . . . 8  |-  ( y  =  { u ,  v }  ->  (
( y  C_  On  /\ 
E. x  x  e.  y )  <->  ( {
u ,  v } 
C_  On  /\  E. x  x  e.  { u ,  v } ) ) )
9 inteq 3874 . . . . . . . . 9  |-  ( y  =  { u ,  v }  ->  |^| y  =  |^| { u ,  v } )
10 id 19 . . . . . . . . 9  |-  ( y  =  { u ,  v }  ->  y  =  { u ,  v } )
119, 10eleq12d 2264 . . . . . . . 8  |-  ( y  =  { u ,  v }  ->  ( |^| y  e.  y  <->  |^|
{ u ,  v }  e.  { u ,  v } ) )
128, 11imbi12d 234 . . . . . . 7  |-  ( y  =  { u ,  v }  ->  (
( ( y  C_  On  /\  E. x  x  e.  y )  ->  |^| y  e.  y
)  <->  ( ( { u ,  v } 
C_  On  /\  E. x  x  e.  { u ,  v } )  ->  |^| { u ,  v }  e.  {
u ,  v } ) ) )
13 onintexmid.onint . . . . . . 7  |-  ( ( y  C_  On  /\  E. x  x  e.  y
)  ->  |^| y  e.  y )
144, 12, 13vtocl 2815 . . . . . 6  |-  ( ( { u ,  v }  C_  On  /\  E. x  x  e.  { u ,  v } )  ->  |^| { u ,  v }  e.  {
u ,  v } )
151, 3, 14syl2anc 411 . . . . 5  |-  ( ( u  e.  On  /\  v  e.  On )  ->  |^| { u ,  v }  e.  {
u ,  v } )
16 elpri 3642 . . . . 5  |-  ( |^| { u ,  v }  e.  { u ,  v }  ->  ( |^| { u ,  v }  =  u  \/ 
|^| { u ,  v }  =  v ) )
1715, 16syl 14 . . . 4  |-  ( ( u  e.  On  /\  v  e.  On )  ->  ( |^| { u ,  v }  =  u  \/  |^| { u ,  v }  =  v ) )
18 incom 3352 . . . . . . 7  |-  ( v  i^i  u )  =  ( u  i^i  v
)
1918eqeq1i 2201 . . . . . 6  |-  ( ( v  i^i  u )  =  u  <->  ( u  i^i  v )  =  u )
20 dfss1 3364 . . . . . 6  |-  ( u 
C_  v  <->  ( v  i^i  u )  =  u )
21 vex 2763 . . . . . . . 8  |-  u  e. 
_V
22 vex 2763 . . . . . . . 8  |-  v  e. 
_V
2321, 22intpr 3903 . . . . . . 7  |-  |^| { u ,  v }  =  ( u  i^i  v
)
2423eqeq1i 2201 . . . . . 6  |-  ( |^| { u ,  v }  =  u  <->  ( u  i^i  v )  =  u )
2519, 20, 243bitr4ri 213 . . . . 5  |-  ( |^| { u ,  v }  =  u  <->  u  C_  v
)
2623eqeq1i 2201 . . . . . 6  |-  ( |^| { u ,  v }  =  v  <->  ( u  i^i  v )  =  v )
27 dfss1 3364 . . . . . 6  |-  ( v 
C_  u  <->  ( u  i^i  v )  =  v )
2826, 27bitr4i 187 . . . . 5  |-  ( |^| { u ,  v }  =  v  <->  v  C_  u )
2925, 28orbi12i 765 . . . 4  |-  ( (
|^| { u ,  v }  =  u  \/ 
|^| { u ,  v }  =  v )  <-> 
( u  C_  v  \/  v  C_  u ) )
3017, 29sylib 122 . . 3  |-  ( ( u  e.  On  /\  v  e.  On )  ->  ( u  C_  v  \/  v  C_  u ) )
3130rgen2a 2548 . 2  |-  A. u  e.  On  A. v  e.  On  ( u  C_  v  \/  v  C_  u )
3231ordtri2or2exmid 4604 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364   E.wex 1503    e. wcel 2164    i^i cin 3153    C_ wss 3154   {cpr 3620   |^|cint 3871   Oncon0 4395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-uni 3837  df-int 3872  df-tr 4129  df-iord 4398  df-on 4400  df-suc 4403
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator