| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > onintexmid | Unicode version | ||
| Description: If the intersection (infimum) of an inhabited class of ordinal numbers belongs to the class, excluded middle follows. The hypothesis would be provable given excluded middle. (Contributed by Mario Carneiro and Jim Kingdon, 29-Aug-2021.) |
| Ref | Expression |
|---|---|
| onintexmid.onint |
|
| Ref | Expression |
|---|---|
| onintexmid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prssi 3794 |
. . . . . 6
| |
| 2 | prmg 3757 |
. . . . . . 7
| |
| 3 | 2 | adantr 276 |
. . . . . 6
|
| 4 | zfpair2 4259 |
. . . . . . 7
| |
| 5 | sseq1 3218 |
. . . . . . . . 9
| |
| 6 | eleq2 2270 |
. . . . . . . . . 10
| |
| 7 | 6 | exbidv 1849 |
. . . . . . . . 9
|
| 8 | 5, 7 | anbi12d 473 |
. . . . . . . 8
|
| 9 | inteq 3891 |
. . . . . . . . 9
| |
| 10 | id 19 |
. . . . . . . . 9
| |
| 11 | 9, 10 | eleq12d 2277 |
. . . . . . . 8
|
| 12 | 8, 11 | imbi12d 234 |
. . . . . . 7
|
| 13 | onintexmid.onint |
. . . . . . 7
| |
| 14 | 4, 12, 13 | vtocl 2829 |
. . . . . 6
|
| 15 | 1, 3, 14 | syl2anc 411 |
. . . . 5
|
| 16 | elpri 3658 |
. . . . 5
| |
| 17 | 15, 16 | syl 14 |
. . . 4
|
| 18 | incom 3367 |
. . . . . . 7
| |
| 19 | 18 | eqeq1i 2214 |
. . . . . 6
|
| 20 | dfss1 3379 |
. . . . . 6
| |
| 21 | vex 2776 |
. . . . . . . 8
| |
| 22 | vex 2776 |
. . . . . . . 8
| |
| 23 | 21, 22 | intpr 3920 |
. . . . . . 7
|
| 24 | 23 | eqeq1i 2214 |
. . . . . 6
|
| 25 | 19, 20, 24 | 3bitr4ri 213 |
. . . . 5
|
| 26 | 23 | eqeq1i 2214 |
. . . . . 6
|
| 27 | dfss1 3379 |
. . . . . 6
| |
| 28 | 26, 27 | bitr4i 187 |
. . . . 5
|
| 29 | 25, 28 | orbi12i 766 |
. . . 4
|
| 30 | 17, 29 | sylib 122 |
. . 3
|
| 31 | 30 | rgen2a 2561 |
. 2
|
| 32 | 31 | ordtri2or2exmid 4624 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-uni 3854 df-int 3889 df-tr 4148 df-iord 4418 df-on 4420 df-suc 4423 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |