ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfss1 GIF version

Theorem dfss1 3326
Description: A frequently-used variant of subclass definition df-ss 3129. (Contributed by NM, 10-Jan-2015.)
Assertion
Ref Expression
dfss1 (𝐴𝐵 ↔ (𝐵𝐴) = 𝐴)

Proof of Theorem dfss1
StepHypRef Expression
1 df-ss 3129 . 2 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)
2 incom 3314 . . 3 (𝐴𝐵) = (𝐵𝐴)
32eqeq1i 2173 . 2 ((𝐴𝐵) = 𝐴 ↔ (𝐵𝐴) = 𝐴)
41, 3bitri 183 1 (𝐴𝐵 ↔ (𝐵𝐴) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wb 104   = wceq 1343  cin 3115  wss 3116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-in 3122  df-ss 3129
This theorem is referenced by:  dfss5  3327  sseqin2  3341  onintexmid  4550  xpimasn  5052  fndmdif  5590  infiexmid  6843  ssfidc  6900  isumss  11332  znnen  12331
  Copyright terms: Public domain W3C validator