ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfss1 GIF version

Theorem dfss1 3331
Description: A frequently-used variant of subclass definition df-ss 3134. (Contributed by NM, 10-Jan-2015.)
Assertion
Ref Expression
dfss1 (𝐴𝐵 ↔ (𝐵𝐴) = 𝐴)

Proof of Theorem dfss1
StepHypRef Expression
1 df-ss 3134 . 2 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)
2 incom 3319 . . 3 (𝐴𝐵) = (𝐵𝐴)
32eqeq1i 2178 . 2 ((𝐴𝐵) = 𝐴 ↔ (𝐵𝐴) = 𝐴)
41, 3bitri 183 1 (𝐴𝐵 ↔ (𝐵𝐴) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wb 104   = wceq 1348  cin 3120  wss 3121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-in 3127  df-ss 3134
This theorem is referenced by:  dfss5  3332  sseqin2  3346  onintexmid  4557  xpimasn  5059  fndmdif  5601  infiexmid  6855  ssfidc  6912  isumss  11354  znnen  12353
  Copyright terms: Public domain W3C validator