ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfss1 GIF version

Theorem dfss1 3367
Description: A frequently-used variant of subclass definition df-ss 3170. (Contributed by NM, 10-Jan-2015.)
Assertion
Ref Expression
dfss1 (𝐴𝐵 ↔ (𝐵𝐴) = 𝐴)

Proof of Theorem dfss1
StepHypRef Expression
1 df-ss 3170 . 2 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)
2 incom 3355 . . 3 (𝐴𝐵) = (𝐵𝐴)
32eqeq1i 2204 . 2 ((𝐴𝐵) = 𝐴 ↔ (𝐵𝐴) = 𝐴)
41, 3bitri 184 1 (𝐴𝐵 ↔ (𝐵𝐴) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1364  cin 3156  wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163  df-ss 3170
This theorem is referenced by:  dfss5  3368  sseqin2  3382  onintexmid  4609  xpimasn  5118  fndmdif  5667  infiexmid  6938  ssfidc  6998  isumss  11556  znnen  12615
  Copyright terms: Public domain W3C validator