ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfss1 GIF version

Theorem dfss1 3341
Description: A frequently-used variant of subclass definition df-ss 3144. (Contributed by NM, 10-Jan-2015.)
Assertion
Ref Expression
dfss1 (𝐴𝐵 ↔ (𝐵𝐴) = 𝐴)

Proof of Theorem dfss1
StepHypRef Expression
1 df-ss 3144 . 2 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)
2 incom 3329 . . 3 (𝐴𝐵) = (𝐵𝐴)
32eqeq1i 2185 . 2 ((𝐴𝐵) = 𝐴 ↔ (𝐵𝐴) = 𝐴)
41, 3bitri 184 1 (𝐴𝐵 ↔ (𝐵𝐴) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1353  cin 3130  wss 3131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-in 3137  df-ss 3144
This theorem is referenced by:  dfss5  3342  sseqin2  3356  onintexmid  4574  xpimasn  5079  fndmdif  5623  infiexmid  6879  ssfidc  6936  isumss  11401  znnen  12401
  Copyright terms: Public domain W3C validator