ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpimasn Unicode version

Theorem xpimasn 5114
Description: The image of a singleton by a cross product. (Contributed by Thierry Arnoux, 14-Jan-2018.)
Assertion
Ref Expression
xpimasn  |-  ( X  e.  A  ->  (
( A  X.  B
) " { X } )  =  B )

Proof of Theorem xpimasn
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 snmg 3736 . . 3  |-  ( X  e.  A  ->  E. x  x  e.  { X } )
2 snssi 3762 . . . . . 6  |-  ( X  e.  A  ->  { X }  C_  A )
3 dfss1 3363 . . . . . 6  |-  ( { X }  C_  A  <->  ( A  i^i  { X } )  =  { X } )
42, 3sylib 122 . . . . 5  |-  ( X  e.  A  ->  ( A  i^i  { X }
)  =  { X } )
54eleq2d 2263 . . . 4  |-  ( X  e.  A  ->  (
x  e.  ( A  i^i  { X }
)  <->  x  e.  { X } ) )
65exbidv 1836 . . 3  |-  ( X  e.  A  ->  ( E. x  x  e.  ( A  i^i  { X } )  <->  E. x  x  e.  { X } ) )
71, 6mpbird 167 . 2  |-  ( X  e.  A  ->  E. x  x  e.  ( A  i^i  { X } ) )
8 xpima2m 5113 . 2  |-  ( E. x  x  e.  ( A  i^i  { X } )  ->  (
( A  X.  B
) " { X } )  =  B )
97, 8syl 14 1  |-  ( X  e.  A  ->  (
( A  X.  B
) " { X } )  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   E.wex 1503    e. wcel 2164    i^i cin 3152    C_ wss 3153   {csn 3618    X. cxp 4657   "cima 4662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-cnv 4667  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672
This theorem is referenced by:  imasnopn  14467
  Copyright terms: Public domain W3C validator