Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dftr5 | Unicode version |
Description: An alternate way of defining a transitive class. (Contributed by NM, 20-Mar-2004.) |
Ref | Expression |
---|---|
dftr5 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dftr2 4082 | . 2 | |
2 | alcom 1466 | . . 3 | |
3 | impexp 261 | . . . . . . . 8 | |
4 | 3 | albii 1458 | . . . . . . 7 |
5 | df-ral 2449 | . . . . . . 7 | |
6 | 4, 5 | bitr4i 186 | . . . . . 6 |
7 | r19.21v 2543 | . . . . . 6 | |
8 | 6, 7 | bitri 183 | . . . . 5 |
9 | 8 | albii 1458 | . . . 4 |
10 | df-ral 2449 | . . . 4 | |
11 | 9, 10 | bitr4i 186 | . . 3 |
12 | 2, 11 | bitri 183 | . 2 |
13 | 1, 12 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1341 wcel 2136 wral 2444 wtr 4080 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-in 3122 df-ss 3129 df-uni 3790 df-tr 4081 |
This theorem is referenced by: dftr3 4084 exmidonfinlem 7149 |
Copyright terms: Public domain | W3C validator |