Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dftr5 | Unicode version |
Description: An alternate way of defining a transitive class. (Contributed by NM, 20-Mar-2004.) |
Ref | Expression |
---|---|
dftr5 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dftr2 4077 | . 2 | |
2 | alcom 1465 | . . 3 | |
3 | impexp 261 | . . . . . . . 8 | |
4 | 3 | albii 1457 | . . . . . . 7 |
5 | df-ral 2447 | . . . . . . 7 | |
6 | 4, 5 | bitr4i 186 | . . . . . 6 |
7 | r19.21v 2541 | . . . . . 6 | |
8 | 6, 7 | bitri 183 | . . . . 5 |
9 | 8 | albii 1457 | . . . 4 |
10 | df-ral 2447 | . . . 4 | |
11 | 9, 10 | bitr4i 186 | . . 3 |
12 | 2, 11 | bitri 183 | . 2 |
13 | 1, 12 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1340 wcel 2135 wral 2442 wtr 4075 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-ext 2146 |
This theorem depends on definitions: df-bi 116 df-tru 1345 df-nf 1448 df-sb 1750 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ral 2447 df-v 2724 df-in 3118 df-ss 3125 df-uni 3785 df-tr 4076 |
This theorem is referenced by: dftr3 4079 exmidonfinlem 7141 |
Copyright terms: Public domain | W3C validator |