ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difprsn2 Unicode version

Theorem difprsn2 3762
Description: Removal of a singleton from an unordered pair. (Contributed by Alexander van der Vekens, 5-Oct-2017.)
Assertion
Ref Expression
difprsn2  |-  ( A  =/=  B  ->  ( { A ,  B }  \  { B } )  =  { A }
)

Proof of Theorem difprsn2
StepHypRef Expression
1 prcom 3698 . . 3  |-  { A ,  B }  =  { B ,  A }
21difeq1i 3277 . 2  |-  ( { A ,  B }  \  { B } )  =  ( { B ,  A }  \  { B } )
3 necom 2451 . . 3  |-  ( A  =/=  B  <->  B  =/=  A )
4 difprsn1 3761 . . 3  |-  ( B  =/=  A  ->  ( { B ,  A }  \  { B } )  =  { A }
)
53, 4sylbi 121 . 2  |-  ( A  =/=  B  ->  ( { B ,  A }  \  { B } )  =  { A }
)
62, 5eqtrid 2241 1  |-  ( A  =/=  B  ->  ( { A ,  B }  \  { B } )  =  { A }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    =/= wne 2367    \ cdif 3154   {csn 3622   {cpr 3623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-sn 3628  df-pr 3629
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator