| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > difprsn2 | GIF version | ||
| Description: Removal of a singleton from an unordered pair. (Contributed by Alexander van der Vekens, 5-Oct-2017.) | 
| Ref | Expression | 
|---|---|
| difprsn2 | ⊢ (𝐴 ≠ 𝐵 → ({𝐴, 𝐵} ∖ {𝐵}) = {𝐴}) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | prcom 3698 | . . 3 ⊢ {𝐴, 𝐵} = {𝐵, 𝐴} | |
| 2 | 1 | difeq1i 3277 | . 2 ⊢ ({𝐴, 𝐵} ∖ {𝐵}) = ({𝐵, 𝐴} ∖ {𝐵}) | 
| 3 | necom 2451 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) | |
| 4 | difprsn1 3761 | . . 3 ⊢ (𝐵 ≠ 𝐴 → ({𝐵, 𝐴} ∖ {𝐵}) = {𝐴}) | |
| 5 | 3, 4 | sylbi 121 | . 2 ⊢ (𝐴 ≠ 𝐵 → ({𝐵, 𝐴} ∖ {𝐵}) = {𝐴}) | 
| 6 | 2, 5 | eqtrid 2241 | 1 ⊢ (𝐴 ≠ 𝐵 → ({𝐴, 𝐵} ∖ {𝐵}) = {𝐴}) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ≠ wne 2367 ∖ cdif 3154 {csn 3622 {cpr 3623 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-sn 3628 df-pr 3629 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |