ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodsplitdc Unicode version

Theorem fprodsplitdc 12102
Description: Split a finite product into two parts. New proofs should use fprodsplit 12103 which is the same but with one fewer hypothesis. (Contributed by Scott Fenton, 16-Dec-2017.) (New usage is discouraged.)
Hypotheses
Ref Expression
fprodsplitdc.1  |-  ( ph  ->  ( A  i^i  B
)  =  (/) )
fprodsplitdc.2  |-  ( ph  ->  U  =  ( A  u.  B ) )
fprodsplitdc.3  |-  ( ph  ->  U  e.  Fin )
fprodsplitdc.a  |-  ( ph  ->  A. j  e.  U DECID  j  e.  A )
fprodsplitdc.4  |-  ( (
ph  /\  k  e.  U )  ->  C  e.  CC )
Assertion
Ref Expression
fprodsplitdc  |-  ( ph  ->  prod_ k  e.  U  C  =  ( prod_ k  e.  A  C  x.  prod_ k  e.  B  C
) )
Distinct variable groups:    A, j, k    B, j, k    ph, j,
k    U, j, k
Allowed substitution hints:    C( j, k)

Proof of Theorem fprodsplitdc
StepHypRef Expression
1 iftrue 3607 . . . . 5  |-  ( k  e.  A  ->  if ( k  e.  A ,  C ,  1 )  =  C )
21prodeq2i 12068 . . . 4  |-  prod_ k  e.  A  if (
k  e.  A ,  C ,  1 )  =  prod_ k  e.  A  C
3 ssun1 3367 . . . . . 6  |-  A  C_  ( A  u.  B
)
4 fprodsplitdc.2 . . . . . 6  |-  ( ph  ->  U  =  ( A  u.  B ) )
53, 4sseqtrrid 3275 . . . . 5  |-  ( ph  ->  A  C_  U )
61adantl 277 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  A ,  C ,  1 )  =  C )
75sselda 3224 . . . . . . 7  |-  ( (
ph  /\  k  e.  A )  ->  k  e.  U )
8 fprodsplitdc.4 . . . . . . 7  |-  ( (
ph  /\  k  e.  U )  ->  C  e.  CC )
97, 8syldan 282 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
106, 9eqeltrd 2306 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  A ,  C ,  1 )  e.  CC )
11 fprodsplitdc.a . . . . 5  |-  ( ph  ->  A. j  e.  U DECID  j  e.  A )
12 eldifn 3327 . . . . . . 7  |-  ( k  e.  ( U  \  A )  ->  -.  k  e.  A )
1312iffalsed 3612 . . . . . 6  |-  ( k  e.  ( U  \  A )  ->  if ( k  e.  A ,  C ,  1 )  =  1 )
1413adantl 277 . . . . 5  |-  ( (
ph  /\  k  e.  ( U  \  A ) )  ->  if (
k  e.  A ,  C ,  1 )  =  1 )
15 fprodsplitdc.3 . . . . 5  |-  ( ph  ->  U  e.  Fin )
165, 10, 11, 14, 15fprodssdc 12096 . . . 4  |-  ( ph  ->  prod_ k  e.  A  if ( k  e.  A ,  C ,  1 )  =  prod_ k  e.  U  if ( k  e.  A ,  C ,  1 ) )
172, 16eqtr3id 2276 . . 3  |-  ( ph  ->  prod_ k  e.  A  C  =  prod_ k  e.  U  if ( k  e.  A ,  C ,  1 ) )
18 iftrue 3607 . . . . 5  |-  ( k  e.  B  ->  if ( k  e.  B ,  C ,  1 )  =  C )
1918prodeq2i 12068 . . . 4  |-  prod_ k  e.  B  if (
k  e.  B ,  C ,  1 )  =  prod_ k  e.  B  C
20 ssun2 3368 . . . . . 6  |-  B  C_  ( A  u.  B
)
2120, 4sseqtrrid 3275 . . . . 5  |-  ( ph  ->  B  C_  U )
2218adantl 277 . . . . . 6  |-  ( (
ph  /\  k  e.  B )  ->  if ( k  e.  B ,  C ,  1 )  =  C )
2321sselda 3224 . . . . . . 7  |-  ( (
ph  /\  k  e.  B )  ->  k  e.  U )
2423, 8syldan 282 . . . . . 6  |-  ( (
ph  /\  k  e.  B )  ->  C  e.  CC )
2522, 24eqeltrd 2306 . . . . 5  |-  ( (
ph  /\  k  e.  B )  ->  if ( k  e.  B ,  C ,  1 )  e.  CC )
26 fprodsplitdc.1 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( A  i^i  B
)  =  (/) )
27 disj 3540 . . . . . . . . . . . . . 14  |-  ( ( A  i^i  B )  =  (/)  <->  A. j  e.  A  -.  j  e.  B
)
2826, 27sylib 122 . . . . . . . . . . . . 13  |-  ( ph  ->  A. j  e.  A  -.  j  e.  B
)
2928ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  U )  /\ DECID  j  e.  A )  ->  A. j  e.  A  -.  j  e.  B )
3029r19.21bi 2618 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  j  e.  U )  /\ DECID  j  e.  A )  /\  j  e.  A
)  ->  -.  j  e.  B )
3130olcd 739 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  j  e.  U )  /\ DECID  j  e.  A )  /\  j  e.  A
)  ->  ( j  e.  B  \/  -.  j  e.  B )
)
32 df-dc 840 . . . . . . . . . 10  |-  (DECID  j  e.  B  <->  ( j  e.  B  \/  -.  j  e.  B ) )
3331, 32sylibr 134 . . . . . . . . 9  |-  ( ( ( ( ph  /\  j  e.  U )  /\ DECID  j  e.  A )  /\  j  e.  A
)  -> DECID  j  e.  B
)
34 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  j  e.  U )  /\ DECID  j  e.  A )  /\  -.  j  e.  A
)  ->  -.  j  e.  A )
35 simpllr 534 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  j  e.  U )  /\ DECID  j  e.  A )  /\  -.  j  e.  A
)  ->  j  e.  U )
364eleq2d 2299 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( j  e.  U  <->  j  e.  ( A  u.  B ) ) )
3736ad3antrrr 492 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  j  e.  U )  /\ DECID  j  e.  A )  /\  -.  j  e.  A
)  ->  ( j  e.  U  <->  j  e.  ( A  u.  B ) ) )
3835, 37mpbid 147 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  j  e.  U )  /\ DECID  j  e.  A )  /\  -.  j  e.  A
)  ->  j  e.  ( A  u.  B
) )
39 elun 3345 . . . . . . . . . . . . . 14  |-  ( j  e.  ( A  u.  B )  <->  ( j  e.  A  \/  j  e.  B ) )
4038, 39sylib 122 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  j  e.  U )  /\ DECID  j  e.  A )  /\  -.  j  e.  A
)  ->  ( j  e.  A  \/  j  e.  B ) )
4140orcomd 734 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  j  e.  U )  /\ DECID  j  e.  A )  /\  -.  j  e.  A
)  ->  ( j  e.  B  \/  j  e.  A ) )
4234, 41ecased 1383 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  j  e.  U )  /\ DECID  j  e.  A )  /\  -.  j  e.  A
)  ->  j  e.  B )
4342orcd 738 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  j  e.  U )  /\ DECID  j  e.  A )  /\  -.  j  e.  A
)  ->  ( j  e.  B  \/  -.  j  e.  B )
)
4443, 32sylibr 134 . . . . . . . . 9  |-  ( ( ( ( ph  /\  j  e.  U )  /\ DECID  j  e.  A )  /\  -.  j  e.  A
)  -> DECID  j  e.  B
)
45 exmiddc 841 . . . . . . . . . 10  |-  (DECID  j  e.  A  ->  ( j  e.  A  \/  -.  j  e.  A )
)
4645adantl 277 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  U )  /\ DECID  j  e.  A )  ->  (
j  e.  A  \/  -.  j  e.  A
) )
4733, 44, 46mpjaodan 803 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  U )  /\ DECID  j  e.  A )  -> DECID  j  e.  B
)
4847ex 115 . . . . . . 7  |-  ( (
ph  /\  j  e.  U )  ->  (DECID  j  e.  A  -> DECID  j  e.  B
) )
4948ralimdva 2597 . . . . . 6  |-  ( ph  ->  ( A. j  e.  U DECID  j  e.  A  ->  A. j  e.  U DECID  j  e.  B ) )
5011, 49mpd 13 . . . . 5  |-  ( ph  ->  A. j  e.  U DECID  j  e.  B )
51 eldifn 3327 . . . . . . 7  |-  ( k  e.  ( U  \  B )  ->  -.  k  e.  B )
5251iffalsed 3612 . . . . . 6  |-  ( k  e.  ( U  \  B )  ->  if ( k  e.  B ,  C ,  1 )  =  1 )
5352adantl 277 . . . . 5  |-  ( (
ph  /\  k  e.  ( U  \  B ) )  ->  if (
k  e.  B ,  C ,  1 )  =  1 )
5421, 25, 50, 53, 15fprodssdc 12096 . . . 4  |-  ( ph  ->  prod_ k  e.  B  if ( k  e.  B ,  C ,  1 )  =  prod_ k  e.  U  if ( k  e.  B ,  C ,  1 ) )
5519, 54eqtr3id 2276 . . 3  |-  ( ph  ->  prod_ k  e.  B  C  =  prod_ k  e.  U  if ( k  e.  B ,  C ,  1 ) )
5617, 55oveq12d 6018 . 2  |-  ( ph  ->  ( prod_ k  e.  A  C  x.  prod_ k  e.  B  C )  =  ( prod_ k  e.  U  if ( k  e.  A ,  C ,  1 )  x.  prod_ k  e.  U  if ( k  e.  B ,  C ,  1 ) ) )
57 1cnd 8158 . . . 4  |-  ( (
ph  /\  k  e.  U )  ->  1  e.  CC )
58 eleq1w 2290 . . . . . . . 8  |-  ( j  =  k  ->  (
j  e.  A  <->  k  e.  A ) )
5958dcbid 843 . . . . . . 7  |-  ( j  =  k  ->  (DECID  j  e.  A  <-> DECID  k  e.  A )
)
6059cbvralv 2765 . . . . . 6  |-  ( A. j  e.  U DECID  j  e.  A 
<-> 
A. k  e.  U DECID  k  e.  A )
6111, 60sylib 122 . . . . 5  |-  ( ph  ->  A. k  e.  U DECID  k  e.  A )
6261r19.21bi 2618 . . . 4  |-  ( (
ph  /\  k  e.  U )  -> DECID  k  e.  A
)
638, 57, 62ifcldcd 3640 . . 3  |-  ( (
ph  /\  k  e.  U )  ->  if ( k  e.  A ,  C ,  1 )  e.  CC )
64 eleq1w 2290 . . . . . . . 8  |-  ( j  =  k  ->  (
j  e.  B  <->  k  e.  B ) )
6564dcbid 843 . . . . . . 7  |-  ( j  =  k  ->  (DECID  j  e.  B  <-> DECID  k  e.  B )
)
6665cbvralv 2765 . . . . . 6  |-  ( A. j  e.  U DECID  j  e.  B 
<-> 
A. k  e.  U DECID  k  e.  B )
6750, 66sylib 122 . . . . 5  |-  ( ph  ->  A. k  e.  U DECID  k  e.  B )
6867r19.21bi 2618 . . . 4  |-  ( (
ph  /\  k  e.  U )  -> DECID  k  e.  B
)
698, 57, 68ifcldcd 3640 . . 3  |-  ( (
ph  /\  k  e.  U )  ->  if ( k  e.  B ,  C ,  1 )  e.  CC )
7015, 63, 69fprodmul 12097 . 2  |-  ( ph  ->  prod_ k  e.  U  ( if ( k  e.  A ,  C , 
1 )  x.  if ( k  e.  B ,  C ,  1 ) )  =  ( prod_
k  e.  U  if ( k  e.  A ,  C ,  1 )  x.  prod_ k  e.  U  if ( k  e.  B ,  C ,  1 ) ) )
714eleq2d 2299 . . . . . 6  |-  ( ph  ->  ( k  e.  U  <->  k  e.  ( A  u.  B ) ) )
72 elun 3345 . . . . . 6  |-  ( k  e.  ( A  u.  B )  <->  ( k  e.  A  \/  k  e.  B ) )
7371, 72bitrdi 196 . . . . 5  |-  ( ph  ->  ( k  e.  U  <->  ( k  e.  A  \/  k  e.  B )
) )
7473biimpa 296 . . . 4  |-  ( (
ph  /\  k  e.  U )  ->  (
k  e.  A  \/  k  e.  B )
)
75 disjel 3546 . . . . . . . . 9  |-  ( ( ( A  i^i  B
)  =  (/)  /\  k  e.  A )  ->  -.  k  e.  B )
7626, 75sylan 283 . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  -.  k  e.  B )
7776iffalsed 3612 . . . . . . 7  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  B ,  C ,  1 )  =  1 )
786, 77oveq12d 6018 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  ( if ( k  e.  A ,  C ,  1 )  x.  if ( k  e.  B ,  C ,  1 ) )  =  ( C  x.  1 ) )
799mulridd 8159 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  ( C  x.  1 )  =  C )
8078, 79eqtrd 2262 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  ( if ( k  e.  A ,  C ,  1 )  x.  if ( k  e.  B ,  C ,  1 ) )  =  C )
8176ex 115 . . . . . . . . . 10  |-  ( ph  ->  ( k  e.  A  ->  -.  k  e.  B
) )
8281con2d 627 . . . . . . . . 9  |-  ( ph  ->  ( k  e.  B  ->  -.  k  e.  A
) )
8382imp 124 . . . . . . . 8  |-  ( (
ph  /\  k  e.  B )  ->  -.  k  e.  A )
8483iffalsed 3612 . . . . . . 7  |-  ( (
ph  /\  k  e.  B )  ->  if ( k  e.  A ,  C ,  1 )  =  1 )
8584, 22oveq12d 6018 . . . . . 6  |-  ( (
ph  /\  k  e.  B )  ->  ( if ( k  e.  A ,  C ,  1 )  x.  if ( k  e.  B ,  C ,  1 ) )  =  ( 1  x.  C ) )
8624mulid2d 8161 . . . . . 6  |-  ( (
ph  /\  k  e.  B )  ->  (
1  x.  C )  =  C )
8785, 86eqtrd 2262 . . . . 5  |-  ( (
ph  /\  k  e.  B )  ->  ( if ( k  e.  A ,  C ,  1 )  x.  if ( k  e.  B ,  C ,  1 ) )  =  C )
8880, 87jaodan 802 . . . 4  |-  ( (
ph  /\  ( k  e.  A  \/  k  e.  B ) )  -> 
( if ( k  e.  A ,  C ,  1 )  x.  if ( k  e.  B ,  C , 
1 ) )  =  C )
8974, 88syldan 282 . . 3  |-  ( (
ph  /\  k  e.  U )  ->  ( if ( k  e.  A ,  C ,  1 )  x.  if ( k  e.  B ,  C ,  1 ) )  =  C )
9089prodeq2dv 12072 . 2  |-  ( ph  ->  prod_ k  e.  U  ( if ( k  e.  A ,  C , 
1 )  x.  if ( k  e.  B ,  C ,  1 ) )  =  prod_ k  e.  U  C )
9156, 70, 903eqtr2rd 2269 1  |-  ( ph  ->  prod_ k  e.  U  C  =  ( prod_ k  e.  A  C  x.  prod_ k  e.  B  C
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713  DECID wdc 839    = wceq 1395    e. wcel 2200   A.wral 2508    \ cdif 3194    u. cun 3195    i^i cin 3196   (/)c0 3491   ifcif 3602  (class class class)co 6000   Fincfn 6885   CCcc 7993   1c1 7996    x. cmul 8000   prod_cprod 12056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-isom 5326  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-frec 6535  df-1o 6560  df-oadd 6564  df-er 6678  df-en 6886  df-dom 6887  df-fin 6888  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-fz 10201  df-fzo 10335  df-seqfrec 10665  df-exp 10756  df-ihash 10993  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-clim 11785  df-proddc 12057
This theorem is referenced by:  fprodsplit  12103  fprodm1  12104  fprod1p  12105  fprodunsn  12110  fprodeq0  12123
  Copyright terms: Public domain W3C validator