ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodsplitdc Unicode version

Theorem fprodsplitdc 11604
Description: Split a finite product into two parts. New proofs should use fprodsplit 11605 which is the same but with one fewer hypothesis. (Contributed by Scott Fenton, 16-Dec-2017.) (New usage is discouraged.)
Hypotheses
Ref Expression
fprodsplitdc.1  |-  ( ph  ->  ( A  i^i  B
)  =  (/) )
fprodsplitdc.2  |-  ( ph  ->  U  =  ( A  u.  B ) )
fprodsplitdc.3  |-  ( ph  ->  U  e.  Fin )
fprodsplitdc.a  |-  ( ph  ->  A. j  e.  U DECID  j  e.  A )
fprodsplitdc.4  |-  ( (
ph  /\  k  e.  U )  ->  C  e.  CC )
Assertion
Ref Expression
fprodsplitdc  |-  ( ph  ->  prod_ k  e.  U  C  =  ( prod_ k  e.  A  C  x.  prod_ k  e.  B  C
) )
Distinct variable groups:    A, j, k    B, j, k    ph, j,
k    U, j, k
Allowed substitution hints:    C( j, k)

Proof of Theorem fprodsplitdc
StepHypRef Expression
1 iftrue 3540 . . . . 5  |-  ( k  e.  A  ->  if ( k  e.  A ,  C ,  1 )  =  C )
21prodeq2i 11570 . . . 4  |-  prod_ k  e.  A  if (
k  e.  A ,  C ,  1 )  =  prod_ k  e.  A  C
3 ssun1 3299 . . . . . 6  |-  A  C_  ( A  u.  B
)
4 fprodsplitdc.2 . . . . . 6  |-  ( ph  ->  U  =  ( A  u.  B ) )
53, 4sseqtrrid 3207 . . . . 5  |-  ( ph  ->  A  C_  U )
61adantl 277 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  A ,  C ,  1 )  =  C )
75sselda 3156 . . . . . . 7  |-  ( (
ph  /\  k  e.  A )  ->  k  e.  U )
8 fprodsplitdc.4 . . . . . . 7  |-  ( (
ph  /\  k  e.  U )  ->  C  e.  CC )
97, 8syldan 282 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
106, 9eqeltrd 2254 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  A ,  C ,  1 )  e.  CC )
11 fprodsplitdc.a . . . . 5  |-  ( ph  ->  A. j  e.  U DECID  j  e.  A )
12 eldifn 3259 . . . . . . 7  |-  ( k  e.  ( U  \  A )  ->  -.  k  e.  A )
1312iffalsed 3545 . . . . . 6  |-  ( k  e.  ( U  \  A )  ->  if ( k  e.  A ,  C ,  1 )  =  1 )
1413adantl 277 . . . . 5  |-  ( (
ph  /\  k  e.  ( U  \  A ) )  ->  if (
k  e.  A ,  C ,  1 )  =  1 )
15 fprodsplitdc.3 . . . . 5  |-  ( ph  ->  U  e.  Fin )
165, 10, 11, 14, 15fprodssdc 11598 . . . 4  |-  ( ph  ->  prod_ k  e.  A  if ( k  e.  A ,  C ,  1 )  =  prod_ k  e.  U  if ( k  e.  A ,  C ,  1 ) )
172, 16eqtr3id 2224 . . 3  |-  ( ph  ->  prod_ k  e.  A  C  =  prod_ k  e.  U  if ( k  e.  A ,  C ,  1 ) )
18 iftrue 3540 . . . . 5  |-  ( k  e.  B  ->  if ( k  e.  B ,  C ,  1 )  =  C )
1918prodeq2i 11570 . . . 4  |-  prod_ k  e.  B  if (
k  e.  B ,  C ,  1 )  =  prod_ k  e.  B  C
20 ssun2 3300 . . . . . 6  |-  B  C_  ( A  u.  B
)
2120, 4sseqtrrid 3207 . . . . 5  |-  ( ph  ->  B  C_  U )
2218adantl 277 . . . . . 6  |-  ( (
ph  /\  k  e.  B )  ->  if ( k  e.  B ,  C ,  1 )  =  C )
2321sselda 3156 . . . . . . 7  |-  ( (
ph  /\  k  e.  B )  ->  k  e.  U )
2423, 8syldan 282 . . . . . 6  |-  ( (
ph  /\  k  e.  B )  ->  C  e.  CC )
2522, 24eqeltrd 2254 . . . . 5  |-  ( (
ph  /\  k  e.  B )  ->  if ( k  e.  B ,  C ,  1 )  e.  CC )
26 fprodsplitdc.1 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( A  i^i  B
)  =  (/) )
27 disj 3472 . . . . . . . . . . . . . 14  |-  ( ( A  i^i  B )  =  (/)  <->  A. j  e.  A  -.  j  e.  B
)
2826, 27sylib 122 . . . . . . . . . . . . 13  |-  ( ph  ->  A. j  e.  A  -.  j  e.  B
)
2928ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  U )  /\ DECID  j  e.  A )  ->  A. j  e.  A  -.  j  e.  B )
3029r19.21bi 2565 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  j  e.  U )  /\ DECID  j  e.  A )  /\  j  e.  A
)  ->  -.  j  e.  B )
3130olcd 734 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  j  e.  U )  /\ DECID  j  e.  A )  /\  j  e.  A
)  ->  ( j  e.  B  \/  -.  j  e.  B )
)
32 df-dc 835 . . . . . . . . . 10  |-  (DECID  j  e.  B  <->  ( j  e.  B  \/  -.  j  e.  B ) )
3331, 32sylibr 134 . . . . . . . . 9  |-  ( ( ( ( ph  /\  j  e.  U )  /\ DECID  j  e.  A )  /\  j  e.  A
)  -> DECID  j  e.  B
)
34 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  j  e.  U )  /\ DECID  j  e.  A )  /\  -.  j  e.  A
)  ->  -.  j  e.  A )
35 simpllr 534 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  j  e.  U )  /\ DECID  j  e.  A )  /\  -.  j  e.  A
)  ->  j  e.  U )
364eleq2d 2247 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( j  e.  U  <->  j  e.  ( A  u.  B ) ) )
3736ad3antrrr 492 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  j  e.  U )  /\ DECID  j  e.  A )  /\  -.  j  e.  A
)  ->  ( j  e.  U  <->  j  e.  ( A  u.  B ) ) )
3835, 37mpbid 147 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  j  e.  U )  /\ DECID  j  e.  A )  /\  -.  j  e.  A
)  ->  j  e.  ( A  u.  B
) )
39 elun 3277 . . . . . . . . . . . . . 14  |-  ( j  e.  ( A  u.  B )  <->  ( j  e.  A  \/  j  e.  B ) )
4038, 39sylib 122 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  j  e.  U )  /\ DECID  j  e.  A )  /\  -.  j  e.  A
)  ->  ( j  e.  A  \/  j  e.  B ) )
4140orcomd 729 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  j  e.  U )  /\ DECID  j  e.  A )  /\  -.  j  e.  A
)  ->  ( j  e.  B  \/  j  e.  A ) )
4234, 41ecased 1349 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  j  e.  U )  /\ DECID  j  e.  A )  /\  -.  j  e.  A
)  ->  j  e.  B )
4342orcd 733 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  j  e.  U )  /\ DECID  j  e.  A )  /\  -.  j  e.  A
)  ->  ( j  e.  B  \/  -.  j  e.  B )
)
4443, 32sylibr 134 . . . . . . . . 9  |-  ( ( ( ( ph  /\  j  e.  U )  /\ DECID  j  e.  A )  /\  -.  j  e.  A
)  -> DECID  j  e.  B
)
45 exmiddc 836 . . . . . . . . . 10  |-  (DECID  j  e.  A  ->  ( j  e.  A  \/  -.  j  e.  A )
)
4645adantl 277 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  U )  /\ DECID  j  e.  A )  ->  (
j  e.  A  \/  -.  j  e.  A
) )
4733, 44, 46mpjaodan 798 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  U )  /\ DECID  j  e.  A )  -> DECID  j  e.  B
)
4847ex 115 . . . . . . 7  |-  ( (
ph  /\  j  e.  U )  ->  (DECID  j  e.  A  -> DECID  j  e.  B
) )
4948ralimdva 2544 . . . . . 6  |-  ( ph  ->  ( A. j  e.  U DECID  j  e.  A  ->  A. j  e.  U DECID  j  e.  B ) )
5011, 49mpd 13 . . . . 5  |-  ( ph  ->  A. j  e.  U DECID  j  e.  B )
51 eldifn 3259 . . . . . . 7  |-  ( k  e.  ( U  \  B )  ->  -.  k  e.  B )
5251iffalsed 3545 . . . . . 6  |-  ( k  e.  ( U  \  B )  ->  if ( k  e.  B ,  C ,  1 )  =  1 )
5352adantl 277 . . . . 5  |-  ( (
ph  /\  k  e.  ( U  \  B ) )  ->  if (
k  e.  B ,  C ,  1 )  =  1 )
5421, 25, 50, 53, 15fprodssdc 11598 . . . 4  |-  ( ph  ->  prod_ k  e.  B  if ( k  e.  B ,  C ,  1 )  =  prod_ k  e.  U  if ( k  e.  B ,  C ,  1 ) )
5519, 54eqtr3id 2224 . . 3  |-  ( ph  ->  prod_ k  e.  B  C  =  prod_ k  e.  U  if ( k  e.  B ,  C ,  1 ) )
5617, 55oveq12d 5893 . 2  |-  ( ph  ->  ( prod_ k  e.  A  C  x.  prod_ k  e.  B  C )  =  ( prod_ k  e.  U  if ( k  e.  A ,  C ,  1 )  x.  prod_ k  e.  U  if ( k  e.  B ,  C ,  1 ) ) )
57 1cnd 7973 . . . 4  |-  ( (
ph  /\  k  e.  U )  ->  1  e.  CC )
58 eleq1w 2238 . . . . . . . 8  |-  ( j  =  k  ->  (
j  e.  A  <->  k  e.  A ) )
5958dcbid 838 . . . . . . 7  |-  ( j  =  k  ->  (DECID  j  e.  A  <-> DECID  k  e.  A )
)
6059cbvralv 2704 . . . . . 6  |-  ( A. j  e.  U DECID  j  e.  A 
<-> 
A. k  e.  U DECID  k  e.  A )
6111, 60sylib 122 . . . . 5  |-  ( ph  ->  A. k  e.  U DECID  k  e.  A )
6261r19.21bi 2565 . . . 4  |-  ( (
ph  /\  k  e.  U )  -> DECID  k  e.  A
)
638, 57, 62ifcldcd 3571 . . 3  |-  ( (
ph  /\  k  e.  U )  ->  if ( k  e.  A ,  C ,  1 )  e.  CC )
64 eleq1w 2238 . . . . . . . 8  |-  ( j  =  k  ->  (
j  e.  B  <->  k  e.  B ) )
6564dcbid 838 . . . . . . 7  |-  ( j  =  k  ->  (DECID  j  e.  B  <-> DECID  k  e.  B )
)
6665cbvralv 2704 . . . . . 6  |-  ( A. j  e.  U DECID  j  e.  B 
<-> 
A. k  e.  U DECID  k  e.  B )
6750, 66sylib 122 . . . . 5  |-  ( ph  ->  A. k  e.  U DECID  k  e.  B )
6867r19.21bi 2565 . . . 4  |-  ( (
ph  /\  k  e.  U )  -> DECID  k  e.  B
)
698, 57, 68ifcldcd 3571 . . 3  |-  ( (
ph  /\  k  e.  U )  ->  if ( k  e.  B ,  C ,  1 )  e.  CC )
7015, 63, 69fprodmul 11599 . 2  |-  ( ph  ->  prod_ k  e.  U  ( if ( k  e.  A ,  C , 
1 )  x.  if ( k  e.  B ,  C ,  1 ) )  =  ( prod_
k  e.  U  if ( k  e.  A ,  C ,  1 )  x.  prod_ k  e.  U  if ( k  e.  B ,  C ,  1 ) ) )
714eleq2d 2247 . . . . . 6  |-  ( ph  ->  ( k  e.  U  <->  k  e.  ( A  u.  B ) ) )
72 elun 3277 . . . . . 6  |-  ( k  e.  ( A  u.  B )  <->  ( k  e.  A  \/  k  e.  B ) )
7371, 72bitrdi 196 . . . . 5  |-  ( ph  ->  ( k  e.  U  <->  ( k  e.  A  \/  k  e.  B )
) )
7473biimpa 296 . . . 4  |-  ( (
ph  /\  k  e.  U )  ->  (
k  e.  A  \/  k  e.  B )
)
75 disjel 3478 . . . . . . . . 9  |-  ( ( ( A  i^i  B
)  =  (/)  /\  k  e.  A )  ->  -.  k  e.  B )
7626, 75sylan 283 . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  -.  k  e.  B )
7776iffalsed 3545 . . . . . . 7  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  B ,  C ,  1 )  =  1 )
786, 77oveq12d 5893 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  ( if ( k  e.  A ,  C ,  1 )  x.  if ( k  e.  B ,  C ,  1 ) )  =  ( C  x.  1 ) )
799mulridd 7974 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  ( C  x.  1 )  =  C )
8078, 79eqtrd 2210 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  ( if ( k  e.  A ,  C ,  1 )  x.  if ( k  e.  B ,  C ,  1 ) )  =  C )
8176ex 115 . . . . . . . . . 10  |-  ( ph  ->  ( k  e.  A  ->  -.  k  e.  B
) )
8281con2d 624 . . . . . . . . 9  |-  ( ph  ->  ( k  e.  B  ->  -.  k  e.  A
) )
8382imp 124 . . . . . . . 8  |-  ( (
ph  /\  k  e.  B )  ->  -.  k  e.  A )
8483iffalsed 3545 . . . . . . 7  |-  ( (
ph  /\  k  e.  B )  ->  if ( k  e.  A ,  C ,  1 )  =  1 )
8584, 22oveq12d 5893 . . . . . 6  |-  ( (
ph  /\  k  e.  B )  ->  ( if ( k  e.  A ,  C ,  1 )  x.  if ( k  e.  B ,  C ,  1 ) )  =  ( 1  x.  C ) )
8624mulid2d 7976 . . . . . 6  |-  ( (
ph  /\  k  e.  B )  ->  (
1  x.  C )  =  C )
8785, 86eqtrd 2210 . . . . 5  |-  ( (
ph  /\  k  e.  B )  ->  ( if ( k  e.  A ,  C ,  1 )  x.  if ( k  e.  B ,  C ,  1 ) )  =  C )
8880, 87jaodan 797 . . . 4  |-  ( (
ph  /\  ( k  e.  A  \/  k  e.  B ) )  -> 
( if ( k  e.  A ,  C ,  1 )  x.  if ( k  e.  B ,  C , 
1 ) )  =  C )
8974, 88syldan 282 . . 3  |-  ( (
ph  /\  k  e.  U )  ->  ( if ( k  e.  A ,  C ,  1 )  x.  if ( k  e.  B ,  C ,  1 ) )  =  C )
9089prodeq2dv 11574 . 2  |-  ( ph  ->  prod_ k  e.  U  ( if ( k  e.  A ,  C , 
1 )  x.  if ( k  e.  B ,  C ,  1 ) )  =  prod_ k  e.  U  C )
9156, 70, 903eqtr2rd 2217 1  |-  ( ph  ->  prod_ k  e.  U  C  =  ( prod_ k  e.  A  C  x.  prod_ k  e.  B  C
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708  DECID wdc 834    = wceq 1353    e. wcel 2148   A.wral 2455    \ cdif 3127    u. cun 3128    i^i cin 3129   (/)c0 3423   ifcif 3535  (class class class)co 5875   Fincfn 6740   CCcc 7809   1c1 7812    x. cmul 7816   prod_cprod 11558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929  ax-arch 7930  ax-caucvg 7931
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-isom 5226  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-irdg 6371  df-frec 6392  df-1o 6417  df-oadd 6421  df-er 6535  df-en 6741  df-dom 6742  df-fin 6743  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-2 8978  df-3 8979  df-4 8980  df-n0 9177  df-z 9254  df-uz 9529  df-q 9620  df-rp 9654  df-fz 10009  df-fzo 10143  df-seqfrec 10446  df-exp 10520  df-ihash 10756  df-cj 10851  df-re 10852  df-im 10853  df-rsqrt 11007  df-abs 11008  df-clim 11287  df-proddc 11559
This theorem is referenced by:  fprodsplit  11605  fprodm1  11606  fprod1p  11607  fprodunsn  11612  fprodeq0  11625
  Copyright terms: Public domain W3C validator