Proof of Theorem fprodsplitdc
| Step | Hyp | Ref
| Expression |
| 1 | | iftrue 3566 |
. . . . 5
        |
| 2 | 1 | prodeq2i 11727 |
. . . 4

   
   |
| 3 | | ssun1 3326 |
. . . . . 6

  |
| 4 | | fprodsplitdc.2 |
. . . . . 6
     |
| 5 | 3, 4 | sseqtrrid 3234 |
. . . . 5

  |
| 6 | 1 | adantl 277 |
. . . . . 6
 
        |
| 7 | 5 | sselda 3183 |
. . . . . . 7
 
   |
| 8 | | fprodsplitdc.4 |
. . . . . . 7
 
   |
| 9 | 7, 8 | syldan 282 |
. . . . . 6
 
   |
| 10 | 6, 9 | eqeltrd 2273 |
. . . . 5
 
        |
| 11 | | fprodsplitdc.a |
. . . . 5
  DECID   |
| 12 | | eldifn 3286 |
. . . . . . 7
  
  |
| 13 | 12 | iffalsed 3571 |
. . . . . 6
          |
| 14 | 13 | adantl 277 |
. . . . 5
 

 
   
   |
| 15 | | fprodsplitdc.3 |
. . . . 5
   |
| 16 | 5, 10, 11, 14, 15 | fprodssdc 11755 |
. . . 4
               |
| 17 | 2, 16 | eqtr3id 2243 |
. . 3
 
        |
| 18 | | iftrue 3566 |
. . . . 5
        |
| 19 | 18 | prodeq2i 11727 |
. . . 4

   
   |
| 20 | | ssun2 3327 |
. . . . . 6

  |
| 21 | 20, 4 | sseqtrrid 3234 |
. . . . 5

  |
| 22 | 18 | adantl 277 |
. . . . . 6
 
        |
| 23 | 21 | sselda 3183 |
. . . . . . 7
 
   |
| 24 | 23, 8 | syldan 282 |
. . . . . 6
 
   |
| 25 | 22, 24 | eqeltrd 2273 |
. . . . 5
 
        |
| 26 | | fprodsplitdc.1 |
. . . . . . . . . . . . . 14
     |
| 27 | | disj 3499 |
. . . . . . . . . . . . . 14
  

  |
| 28 | 26, 27 | sylib 122 |
. . . . . . . . . . . . 13
 
  |
| 29 | 28 | ad2antrr 488 |
. . . . . . . . . . . 12
    DECID
 
  |
| 30 | 29 | r19.21bi 2585 |
. . . . . . . . . . 11
   
 DECID


  |
| 31 | 30 | olcd 735 |
. . . . . . . . . 10
   
 DECID



   |
| 32 | | df-dc 836 |
. . . . . . . . . 10
DECID     |
| 33 | 31, 32 | sylibr 134 |
. . . . . . . . 9
   
 DECID


DECID
  |
| 34 | | simpr 110 |
. . . . . . . . . . . 12
   
 DECID
 
  |
| 35 | | simpllr 534 |
. . . . . . . . . . . . . . 15
   
 DECID
 
  |
| 36 | 4 | eleq2d 2266 |
. . . . . . . . . . . . . . . 16
       |
| 37 | 36 | ad3antrrr 492 |
. . . . . . . . . . . . . . 15
   
 DECID
 

     |
| 38 | 35, 37 | mpbid 147 |
. . . . . . . . . . . . . 14
   
 DECID
 

   |
| 39 | | elun 3304 |
. . . . . . . . . . . . . 14
  

   |
| 40 | 38, 39 | sylib 122 |
. . . . . . . . . . . . 13
   
 DECID
 

   |
| 41 | 40 | orcomd 730 |
. . . . . . . . . . . 12
   
 DECID
 

   |
| 42 | 34, 41 | ecased 1360 |
. . . . . . . . . . 11
   
 DECID
 
  |
| 43 | 42 | orcd 734 |
. . . . . . . . . 10
   
 DECID
 

   |
| 44 | 43, 32 | sylibr 134 |
. . . . . . . . 9
   
 DECID
 
DECID
  |
| 45 | | exmiddc 837 |
. . . . . . . . . 10
DECID

   |
| 46 | 45 | adantl 277 |
. . . . . . . . 9
    DECID
 
   |
| 47 | 33, 44, 46 | mpjaodan 799 |
. . . . . . . 8
    DECID

DECID
  |
| 48 | 47 | ex 115 |
. . . . . . 7
 
 DECID
DECID
   |
| 49 | 48 | ralimdva 2564 |
. . . . . 6
   DECID 
DECID    |
| 50 | 11, 49 | mpd 13 |
. . . . 5
  DECID   |
| 51 | | eldifn 3286 |
. . . . . . 7
  
  |
| 52 | 51 | iffalsed 3571 |
. . . . . 6
          |
| 53 | 52 | adantl 277 |
. . . . 5
 

 
   
   |
| 54 | 21, 25, 50, 53, 15 | fprodssdc 11755 |
. . . 4
               |
| 55 | 19, 54 | eqtr3id 2243 |
. . 3
 
        |
| 56 | 17, 55 | oveq12d 5940 |
. 2
  
                  |
| 57 | | 1cnd 8042 |
. . . 4
 
   |
| 58 | | eleq1w 2257 |
. . . . . . . 8
 
   |
| 59 | 58 | dcbid 839 |
. . . . . . 7
 DECID
DECID
   |
| 60 | 59 | cbvralv 2729 |
. . . . . 6
 
DECID
 DECID   |
| 61 | 11, 60 | sylib 122 |
. . . . 5
  DECID   |
| 62 | 61 | r19.21bi 2585 |
. . . 4
 

DECID
  |
| 63 | 8, 57, 62 | ifcldcd 3597 |
. . 3
 
        |
| 64 | | eleq1w 2257 |
. . . . . . . 8
 
   |
| 65 | 64 | dcbid 839 |
. . . . . . 7
 DECID
DECID
   |
| 66 | 65 | cbvralv 2729 |
. . . . . 6
 
DECID
 DECID   |
| 67 | 50, 66 | sylib 122 |
. . . . 5
  DECID   |
| 68 | 67 | r19.21bi 2585 |
. . . 4
 

DECID
  |
| 69 | 8, 57, 68 | ifcldcd 3597 |
. . 3
 
        |
| 70 | 15, 63, 69 | fprodmul 11756 |
. 2
                              |
| 71 | 4 | eleq2d 2266 |
. . . . . 6
       |
| 72 | | elun 3304 |
. . . . . 6
  

   |
| 73 | 71, 72 | bitrdi 196 |
. . . . 5
  
    |
| 74 | 73 | biimpa 296 |
. . . 4
 
 
   |
| 75 | | disjel 3505 |
. . . . . . . . 9
    
  |
| 76 | 26, 75 | sylan 283 |
. . . . . . . 8
 

  |
| 77 | 76 | iffalsed 3571 |
. . . . . . 7
 
        |
| 78 | 6, 77 | oveq12d 5940 |
. . . . . 6
 
                 |
| 79 | 9 | mulridd 8043 |
. . . . . 6
 
 
   |
| 80 | 78, 79 | eqtrd 2229 |
. . . . 5
 
               |
| 81 | 76 | ex 115 |
. . . . . . . . . 10
     |
| 82 | 81 | con2d 625 |
. . . . . . . . 9
     |
| 83 | 82 | imp 124 |
. . . . . . . 8
 

  |
| 84 | 83 | iffalsed 3571 |
. . . . . . 7
 
        |
| 85 | 84, 22 | oveq12d 5940 |
. . . . . 6
 
                 |
| 86 | 24 | mulid2d 8045 |
. . . . . 6
 
     |
| 87 | 85, 86 | eqtrd 2229 |
. . . . 5
 
               |
| 88 | 80, 87 | jaodan 798 |
. . . 4
 

                |
| 89 | 74, 88 | syldan 282 |
. . 3
 
               |
| 90 | 89 | prodeq2dv 11731 |
. 2
              
  |
| 91 | 56, 70, 90 | 3eqtr2rd 2236 |
1
 
      |