ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjel GIF version

Theorem disjel 3505
Description: A set can't belong to both members of disjoint classes. (Contributed by NM, 28-Feb-2015.)
Assertion
Ref Expression
disjel (((𝐴𝐵) = ∅ ∧ 𝐶𝐴) → ¬ 𝐶𝐵)

Proof of Theorem disjel
StepHypRef Expression
1 disj3 3503 . . 3 ((𝐴𝐵) = ∅ ↔ 𝐴 = (𝐴𝐵))
2 eleq2 2260 . . . 4 (𝐴 = (𝐴𝐵) → (𝐶𝐴𝐶 ∈ (𝐴𝐵)))
3 eldifn 3286 . . . 4 (𝐶 ∈ (𝐴𝐵) → ¬ 𝐶𝐵)
42, 3biimtrdi 163 . . 3 (𝐴 = (𝐴𝐵) → (𝐶𝐴 → ¬ 𝐶𝐵))
51, 4sylbi 121 . 2 ((𝐴𝐵) = ∅ → (𝐶𝐴 → ¬ 𝐶𝐵))
65imp 124 1 (((𝐴𝐵) = ∅ ∧ 𝐶𝐴) → ¬ 𝐶𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1364  wcel 2167  cdif 3154  cin 3156  c0 3450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-dif 3159  df-in 3163  df-nul 3451
This theorem is referenced by:  fvun1  5627  ctssdccl  7177  fsumsplit  11572  fprodsplitdc  11761  fprodsplit  11762
  Copyright terms: Public domain W3C validator