![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > disjel | GIF version |
Description: A set can't belong to both members of disjoint classes. (Contributed by NM, 28-Feb-2015.) |
Ref | Expression |
---|---|
disjel | ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐶 ∈ 𝐴) → ¬ 𝐶 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disj3 3477 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 = (𝐴 ∖ 𝐵)) | |
2 | eleq2 2241 | . . . 4 ⊢ (𝐴 = (𝐴 ∖ 𝐵) → (𝐶 ∈ 𝐴 ↔ 𝐶 ∈ (𝐴 ∖ 𝐵))) | |
3 | eldifn 3260 | . . . 4 ⊢ (𝐶 ∈ (𝐴 ∖ 𝐵) → ¬ 𝐶 ∈ 𝐵) | |
4 | 2, 3 | biimtrdi 163 | . . 3 ⊢ (𝐴 = (𝐴 ∖ 𝐵) → (𝐶 ∈ 𝐴 → ¬ 𝐶 ∈ 𝐵)) |
5 | 1, 4 | sylbi 121 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐶 ∈ 𝐴 → ¬ 𝐶 ∈ 𝐵)) |
6 | 5 | imp 124 | 1 ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐶 ∈ 𝐴) → ¬ 𝐶 ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 ∖ cdif 3128 ∩ cin 3130 ∅c0 3424 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-v 2741 df-dif 3133 df-in 3137 df-nul 3425 |
This theorem is referenced by: fvun1 5584 ctssdccl 7112 fsumsplit 11417 fprodsplitdc 11606 fprodsplit 11607 |
Copyright terms: Public domain | W3C validator |