Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > disjel | GIF version |
Description: A set can't belong to both members of disjoint classes. (Contributed by NM, 28-Feb-2015.) |
Ref | Expression |
---|---|
disjel | ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐶 ∈ 𝐴) → ¬ 𝐶 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disj3 3467 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 = (𝐴 ∖ 𝐵)) | |
2 | eleq2 2234 | . . . 4 ⊢ (𝐴 = (𝐴 ∖ 𝐵) → (𝐶 ∈ 𝐴 ↔ 𝐶 ∈ (𝐴 ∖ 𝐵))) | |
3 | eldifn 3250 | . . . 4 ⊢ (𝐶 ∈ (𝐴 ∖ 𝐵) → ¬ 𝐶 ∈ 𝐵) | |
4 | 2, 3 | syl6bi 162 | . . 3 ⊢ (𝐴 = (𝐴 ∖ 𝐵) → (𝐶 ∈ 𝐴 → ¬ 𝐶 ∈ 𝐵)) |
5 | 1, 4 | sylbi 120 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐶 ∈ 𝐴 → ¬ 𝐶 ∈ 𝐵)) |
6 | 5 | imp 123 | 1 ⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐶 ∈ 𝐴) → ¬ 𝐶 ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 ∖ cdif 3118 ∩ cin 3120 ∅c0 3414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 df-dif 3123 df-in 3127 df-nul 3415 |
This theorem is referenced by: fvun1 5562 ctssdccl 7088 fsumsplit 11370 fprodsplitdc 11559 fprodsplit 11560 |
Copyright terms: Public domain | W3C validator |