ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjne Unicode version

Theorem disjne 3500
Description: Members of disjoint sets are not equal. (Contributed by NM, 28-Mar-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
disjne  |-  ( ( ( A  i^i  B
)  =  (/)  /\  C  e.  A  /\  D  e.  B )  ->  C  =/=  D )

Proof of Theorem disjne
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 disj 3495 . . 3  |-  ( ( A  i^i  B )  =  (/)  <->  A. x  e.  A  -.  x  e.  B
)
2 eleq1 2256 . . . . . 6  |-  ( x  =  C  ->  (
x  e.  B  <->  C  e.  B ) )
32notbid 668 . . . . 5  |-  ( x  =  C  ->  ( -.  x  e.  B  <->  -.  C  e.  B ) )
43rspccva 2863 . . . 4  |-  ( ( A. x  e.  A  -.  x  e.  B  /\  C  e.  A
)  ->  -.  C  e.  B )
5 eleq1a 2265 . . . . 5  |-  ( D  e.  B  ->  ( C  =  D  ->  C  e.  B ) )
65necon3bd 2407 . . . 4  |-  ( D  e.  B  ->  ( -.  C  e.  B  ->  C  =/=  D ) )
74, 6syl5com 29 . . 3  |-  ( ( A. x  e.  A  -.  x  e.  B  /\  C  e.  A
)  ->  ( D  e.  B  ->  C  =/= 
D ) )
81, 7sylanb 284 . 2  |-  ( ( ( A  i^i  B
)  =  (/)  /\  C  e.  A )  ->  ( D  e.  B  ->  C  =/=  D ) )
983impia 1202 1  |-  ( ( ( A  i^i  B
)  =  (/)  /\  C  e.  A  /\  D  e.  B )  ->  C  =/=  D )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164    =/= wne 2364   A.wral 2472    i^i cin 3152   (/)c0 3446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-v 2762  df-dif 3155  df-in 3159  df-nul 3447
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator