ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djussxp Unicode version

Theorem djussxp 4867
Description: Disjoint union is a subset of a cross product. (Contributed by Stefan O'Rear, 21-Nov-2014.)
Assertion
Ref Expression
djussxp  |-  U_ x  e.  A  ( {
x }  X.  B
)  C_  ( A  X.  _V )
Distinct variable group:    x, A
Allowed substitution hint:    B( x)

Proof of Theorem djussxp
StepHypRef Expression
1 iunss 4006 . 2  |-  ( U_ x  e.  A  ( { x }  X.  B )  C_  ( A  X.  _V )  <->  A. x  e.  A  ( {
x }  X.  B
)  C_  ( A  X.  _V ) )
2 snssi 3812 . . 3  |-  ( x  e.  A  ->  { x }  C_  A )
3 ssv 3246 . . 3  |-  B  C_  _V
4 xpss12 4826 . . 3  |-  ( ( { x }  C_  A  /\  B  C_  _V )  ->  ( { x }  X.  B )  C_  ( A  X.  _V )
)
52, 3, 4sylancl 413 . 2  |-  ( x  e.  A  ->  ( { x }  X.  B )  C_  ( A  X.  _V ) )
61, 5mprgbir 2588 1  |-  U_ x  e.  A  ( {
x }  X.  B
)  C_  ( A  X.  _V )
Colors of variables: wff set class
Syntax hints:    e. wcel 2200   _Vcvv 2799    C_ wss 3197   {csn 3666   U_ciun 3965    X. cxp 4717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-in 3203  df-ss 3210  df-sn 3672  df-iun 3967  df-opab 4146  df-xp 4725
This theorem is referenced by:  djudisj  5156
  Copyright terms: Public domain W3C validator