Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > djussxp | Unicode version |
Description: Disjoint union is a subset of a cross product. (Contributed by Stefan O'Rear, 21-Nov-2014.) |
Ref | Expression |
---|---|
djussxp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunss 3914 | . 2 | |
2 | snssi 3724 | . . 3 | |
3 | ssv 3169 | . . 3 | |
4 | xpss12 4718 | . . 3 | |
5 | 2, 3, 4 | sylancl 411 | . 2 |
6 | 1, 5 | mprgbir 2528 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2141 cvv 2730 wss 3121 csn 3583 ciun 3873 cxp 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-in 3127 df-ss 3134 df-sn 3589 df-iun 3875 df-opab 4051 df-xp 4617 |
This theorem is referenced by: djudisj 5038 |
Copyright terms: Public domain | W3C validator |