ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djussxp Unicode version

Theorem djussxp 4841
Description: Disjoint union is a subset of a cross product. (Contributed by Stefan O'Rear, 21-Nov-2014.)
Assertion
Ref Expression
djussxp  |-  U_ x  e.  A  ( {
x }  X.  B
)  C_  ( A  X.  _V )
Distinct variable group:    x, A
Allowed substitution hint:    B( x)

Proof of Theorem djussxp
StepHypRef Expression
1 iunss 3982 . 2  |-  ( U_ x  e.  A  ( { x }  X.  B )  C_  ( A  X.  _V )  <->  A. x  e.  A  ( {
x }  X.  B
)  C_  ( A  X.  _V ) )
2 snssi 3788 . . 3  |-  ( x  e.  A  ->  { x }  C_  A )
3 ssv 3223 . . 3  |-  B  C_  _V
4 xpss12 4800 . . 3  |-  ( ( { x }  C_  A  /\  B  C_  _V )  ->  ( { x }  X.  B )  C_  ( A  X.  _V )
)
52, 3, 4sylancl 413 . 2  |-  ( x  e.  A  ->  ( { x }  X.  B )  C_  ( A  X.  _V ) )
61, 5mprgbir 2566 1  |-  U_ x  e.  A  ( {
x }  X.  B
)  C_  ( A  X.  _V )
Colors of variables: wff set class
Syntax hints:    e. wcel 2178   _Vcvv 2776    C_ wss 3174   {csn 3643   U_ciun 3941    X. cxp 4691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-in 3180  df-ss 3187  df-sn 3649  df-iun 3943  df-opab 4122  df-xp 4699
This theorem is referenced by:  djudisj  5129
  Copyright terms: Public domain W3C validator