ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djussxp Unicode version

Theorem djussxp 4756
Description: Disjoint union is a subset of a cross product. (Contributed by Stefan O'Rear, 21-Nov-2014.)
Assertion
Ref Expression
djussxp  |-  U_ x  e.  A  ( {
x }  X.  B
)  C_  ( A  X.  _V )
Distinct variable group:    x, A
Allowed substitution hint:    B( x)

Proof of Theorem djussxp
StepHypRef Expression
1 iunss 3914 . 2  |-  ( U_ x  e.  A  ( { x }  X.  B )  C_  ( A  X.  _V )  <->  A. x  e.  A  ( {
x }  X.  B
)  C_  ( A  X.  _V ) )
2 snssi 3724 . . 3  |-  ( x  e.  A  ->  { x }  C_  A )
3 ssv 3169 . . 3  |-  B  C_  _V
4 xpss12 4718 . . 3  |-  ( ( { x }  C_  A  /\  B  C_  _V )  ->  ( { x }  X.  B )  C_  ( A  X.  _V )
)
52, 3, 4sylancl 411 . 2  |-  ( x  e.  A  ->  ( { x }  X.  B )  C_  ( A  X.  _V ) )
61, 5mprgbir 2528 1  |-  U_ x  e.  A  ( {
x }  X.  B
)  C_  ( A  X.  _V )
Colors of variables: wff set class
Syntax hints:    e. wcel 2141   _Vcvv 2730    C_ wss 3121   {csn 3583   U_ciun 3873    X. cxp 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-in 3127  df-ss 3134  df-sn 3589  df-iun 3875  df-opab 4051  df-xp 4617
This theorem is referenced by:  djudisj  5038
  Copyright terms: Public domain W3C validator