Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > djussxp | Unicode version |
Description: Disjoint union is a subset of a cross product. (Contributed by Stefan O'Rear, 21-Nov-2014.) |
Ref | Expression |
---|---|
djussxp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunss 3907 | . 2 | |
2 | snssi 3717 | . . 3 | |
3 | ssv 3164 | . . 3 | |
4 | xpss12 4711 | . . 3 | |
5 | 2, 3, 4 | sylancl 410 | . 2 |
6 | 1, 5 | mprgbir 2524 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2136 cvv 2726 wss 3116 csn 3576 ciun 3866 cxp 4602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-in 3122 df-ss 3129 df-sn 3582 df-iun 3868 df-opab 4044 df-xp 4610 |
This theorem is referenced by: djudisj 5031 |
Copyright terms: Public domain | W3C validator |