![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > djussxp | GIF version |
Description: Disjoint union is a subset of a cross product. (Contributed by Stefan O'Rear, 21-Nov-2014.) |
Ref | Expression |
---|---|
djussxp | ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ⊆ (𝐴 × V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunss 3953 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ⊆ (𝐴 × V) ↔ ∀𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ⊆ (𝐴 × V)) | |
2 | snssi 3762 | . . 3 ⊢ (𝑥 ∈ 𝐴 → {𝑥} ⊆ 𝐴) | |
3 | ssv 3201 | . . 3 ⊢ 𝐵 ⊆ V | |
4 | xpss12 4766 | . . 3 ⊢ (({𝑥} ⊆ 𝐴 ∧ 𝐵 ⊆ V) → ({𝑥} × 𝐵) ⊆ (𝐴 × V)) | |
5 | 2, 3, 4 | sylancl 413 | . 2 ⊢ (𝑥 ∈ 𝐴 → ({𝑥} × 𝐵) ⊆ (𝐴 × V)) |
6 | 1, 5 | mprgbir 2552 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ⊆ (𝐴 × V) |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 Vcvv 2760 ⊆ wss 3153 {csn 3618 ∪ ciun 3912 × cxp 4657 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-in 3159 df-ss 3166 df-sn 3624 df-iun 3914 df-opab 4091 df-xp 4665 |
This theorem is referenced by: djudisj 5093 |
Copyright terms: Public domain | W3C validator |