| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > djussxp | GIF version | ||
| Description: Disjoint union is a subset of a cross product. (Contributed by Stefan O'Rear, 21-Nov-2014.) |
| Ref | Expression |
|---|---|
| djussxp | ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ⊆ (𝐴 × V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunss 3974 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ⊆ (𝐴 × V) ↔ ∀𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ⊆ (𝐴 × V)) | |
| 2 | snssi 3783 | . . 3 ⊢ (𝑥 ∈ 𝐴 → {𝑥} ⊆ 𝐴) | |
| 3 | ssv 3219 | . . 3 ⊢ 𝐵 ⊆ V | |
| 4 | xpss12 4790 | . . 3 ⊢ (({𝑥} ⊆ 𝐴 ∧ 𝐵 ⊆ V) → ({𝑥} × 𝐵) ⊆ (𝐴 × V)) | |
| 5 | 2, 3, 4 | sylancl 413 | . 2 ⊢ (𝑥 ∈ 𝐴 → ({𝑥} × 𝐵) ⊆ (𝐴 × V)) |
| 6 | 1, 5 | mprgbir 2565 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ⊆ (𝐴 × V) |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 Vcvv 2773 ⊆ wss 3170 {csn 3638 ∪ ciun 3933 × cxp 4681 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-in 3176 df-ss 3183 df-sn 3644 df-iun 3935 df-opab 4114 df-xp 4689 |
| This theorem is referenced by: djudisj 5119 |
| Copyright terms: Public domain | W3C validator |