| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > djussxp | GIF version | ||
| Description: Disjoint union is a subset of a cross product. (Contributed by Stefan O'Rear, 21-Nov-2014.) |
| Ref | Expression |
|---|---|
| djussxp | ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ⊆ (𝐴 × V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunss 3957 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ⊆ (𝐴 × V) ↔ ∀𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ⊆ (𝐴 × V)) | |
| 2 | snssi 3766 | . . 3 ⊢ (𝑥 ∈ 𝐴 → {𝑥} ⊆ 𝐴) | |
| 3 | ssv 3205 | . . 3 ⊢ 𝐵 ⊆ V | |
| 4 | xpss12 4770 | . . 3 ⊢ (({𝑥} ⊆ 𝐴 ∧ 𝐵 ⊆ V) → ({𝑥} × 𝐵) ⊆ (𝐴 × V)) | |
| 5 | 2, 3, 4 | sylancl 413 | . 2 ⊢ (𝑥 ∈ 𝐴 → ({𝑥} × 𝐵) ⊆ (𝐴 × V)) |
| 6 | 1, 5 | mprgbir 2555 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ⊆ (𝐴 × V) |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 Vcvv 2763 ⊆ wss 3157 {csn 3622 ∪ ciun 3916 × cxp 4661 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-in 3163 df-ss 3170 df-sn 3628 df-iun 3918 df-opab 4095 df-xp 4669 |
| This theorem is referenced by: djudisj 5097 |
| Copyright terms: Public domain | W3C validator |