ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djussxp GIF version

Theorem djussxp 4596
Description: Disjoint union is a subset of a cross product. (Contributed by Stefan O'Rear, 21-Nov-2014.)
Assertion
Ref Expression
djussxp 𝑥𝐴 ({𝑥} × 𝐵) ⊆ (𝐴 × V)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem djussxp
StepHypRef Expression
1 iunss 3779 . 2 ( 𝑥𝐴 ({𝑥} × 𝐵) ⊆ (𝐴 × V) ↔ ∀𝑥𝐴 ({𝑥} × 𝐵) ⊆ (𝐴 × V))
2 snssi 3589 . . 3 (𝑥𝐴 → {𝑥} ⊆ 𝐴)
3 ssv 3049 . . 3 𝐵 ⊆ V
4 xpss12 4560 . . 3 (({𝑥} ⊆ 𝐴𝐵 ⊆ V) → ({𝑥} × 𝐵) ⊆ (𝐴 × V))
52, 3, 4sylancl 405 . 2 (𝑥𝐴 → ({𝑥} × 𝐵) ⊆ (𝐴 × V))
61, 5mprgbir 2434 1 𝑥𝐴 ({𝑥} × 𝐵) ⊆ (𝐴 × V)
Colors of variables: wff set class
Syntax hints:  wcel 1439  Vcvv 2622  wss 3002  {csn 3452   ciun 3738   × cxp 4452
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-v 2624  df-in 3008  df-ss 3015  df-sn 3458  df-iun 3740  df-opab 3908  df-xp 4460
This theorem is referenced by:  djudisj  4873
  Copyright terms: Public domain W3C validator