ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djussxp GIF version

Theorem djussxp 4749
Description: Disjoint union is a subset of a cross product. (Contributed by Stefan O'Rear, 21-Nov-2014.)
Assertion
Ref Expression
djussxp 𝑥𝐴 ({𝑥} × 𝐵) ⊆ (𝐴 × V)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem djussxp
StepHypRef Expression
1 iunss 3907 . 2 ( 𝑥𝐴 ({𝑥} × 𝐵) ⊆ (𝐴 × V) ↔ ∀𝑥𝐴 ({𝑥} × 𝐵) ⊆ (𝐴 × V))
2 snssi 3717 . . 3 (𝑥𝐴 → {𝑥} ⊆ 𝐴)
3 ssv 3164 . . 3 𝐵 ⊆ V
4 xpss12 4711 . . 3 (({𝑥} ⊆ 𝐴𝐵 ⊆ V) → ({𝑥} × 𝐵) ⊆ (𝐴 × V))
52, 3, 4sylancl 410 . 2 (𝑥𝐴 → ({𝑥} × 𝐵) ⊆ (𝐴 × V))
61, 5mprgbir 2524 1 𝑥𝐴 ({𝑥} × 𝐵) ⊆ (𝐴 × V)
Colors of variables: wff set class
Syntax hints:  wcel 2136  Vcvv 2726  wss 3116  {csn 3576   ciun 3866   × cxp 4602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-in 3122  df-ss 3129  df-sn 3582  df-iun 3868  df-opab 4044  df-xp 4610
This theorem is referenced by:  djudisj  5031
  Copyright terms: Public domain W3C validator