ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djudisj Unicode version

Theorem djudisj 5048
Description: Disjoint unions with disjoint index sets are disjoint. (Contributed by Stefan O'Rear, 21-Nov-2014.)
Assertion
Ref Expression
djudisj  |-  ( ( A  i^i  B )  =  (/)  ->  ( U_ x  e.  A  ( { x }  X.  C )  i^i  U_ y  e.  B  ( { y }  X.  D ) )  =  (/) )
Distinct variable groups:    x, A    y, B
Allowed substitution hints:    A( y)    B( x)    C( x, y)    D( x, y)

Proof of Theorem djudisj
StepHypRef Expression
1 djussxp 4765 . 2  |-  U_ x  e.  A  ( {
x }  X.  C
)  C_  ( A  X.  _V )
2 incom 3325 . . 3  |-  ( ( A  X.  _V )  i^i  U_ y  e.  B  ( { y }  X.  D ) )  =  ( U_ y  e.  B  ( { y }  X.  D )  i^i  ( A  X.  _V ) )
3 djussxp 4765 . . . 4  |-  U_ y  e.  B  ( {
y }  X.  D
)  C_  ( B  X.  _V )
4 incom 3325 . . . . 5  |-  ( ( B  X.  _V )  i^i  ( A  X.  _V ) )  =  ( ( A  X.  _V )  i^i  ( B  X.  _V ) )
5 xpdisj1 5045 . . . . 5  |-  ( ( A  i^i  B )  =  (/)  ->  ( ( A  X.  _V )  i^i  ( B  X.  _V ) )  =  (/) )
64, 5eqtrid 2220 . . . 4  |-  ( ( A  i^i  B )  =  (/)  ->  ( ( B  X.  _V )  i^i  ( A  X.  _V ) )  =  (/) )
7 ssdisj 3477 . . . 4  |-  ( (
U_ y  e.  B  ( { y }  X.  D )  C_  ( B  X.  _V )  /\  ( ( B  X.  _V )  i^i  ( A  X.  _V ) )  =  (/) )  ->  ( U_ y  e.  B  ( { y }  X.  D )  i^i  ( A  X.  _V ) )  =  (/) )
83, 6, 7sylancr 414 . . 3  |-  ( ( A  i^i  B )  =  (/)  ->  ( U_ y  e.  B  ( { y }  X.  D )  i^i  ( A  X.  _V ) )  =  (/) )
92, 8eqtrid 2220 . 2  |-  ( ( A  i^i  B )  =  (/)  ->  ( ( A  X.  _V )  i^i  U_ y  e.  B  ( { y }  X.  D ) )  =  (/) )
10 ssdisj 3477 . 2  |-  ( (
U_ x  e.  A  ( { x }  X.  C )  C_  ( A  X.  _V )  /\  ( ( A  X.  _V )  i^i  U_ y  e.  B  ( {
y }  X.  D
) )  =  (/) )  ->  ( U_ x  e.  A  ( {
x }  X.  C
)  i^i  U_ y  e.  B  ( { y }  X.  D ) )  =  (/) )
111, 9, 10sylancr 414 1  |-  ( ( A  i^i  B )  =  (/)  ->  ( U_ x  e.  A  ( { x }  X.  C )  i^i  U_ y  e.  B  ( { y }  X.  D ) )  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353   _Vcvv 2735    i^i cin 3126    C_ wss 3127   (/)c0 3420   {csn 3589   U_ciun 3882    X. cxp 4618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-iun 3884  df-opab 4060  df-xp 4626  df-rel 4627
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator