Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexxp | Unicode version |
Description: Existential quantification restricted to a cross product is equivalent to a double restricted quantification. (Contributed by NM, 11-Nov-1995.) (Revised by Mario Carneiro, 14-Feb-2015.) |
Ref | Expression |
---|---|
ralxp.1 |
Ref | Expression |
---|---|
rexxp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunxpconst 4680 | . . 3 | |
2 | 1 | rexeqi 2675 | . 2 |
3 | ralxp.1 | . . 3 | |
4 | 3 | rexiunxp 4762 | . 2 |
5 | 2, 4 | bitr3i 186 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 105 wceq 1353 wrex 2454 csn 3589 cop 3592 ciun 3882 cxp 4618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-sbc 2961 df-csb 3056 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-iun 3884 df-opab 4060 df-xp 4626 df-rel 4627 |
This theorem is referenced by: rexxpf 4767 fnrnov 6010 foov 6011 ovelimab 6015 xpf1o 6834 cnref1o 9621 txbas 13309 |
Copyright terms: Public domain | W3C validator |