ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexxp Unicode version

Theorem rexxp 4806
Description: Existential quantification restricted to a cross product is equivalent to a double restricted quantification. (Contributed by NM, 11-Nov-1995.) (Revised by Mario Carneiro, 14-Feb-2015.)
Hypothesis
Ref Expression
ralxp.1  |-  ( x  =  <. y ,  z
>.  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
rexxp  |-  ( E. x  e.  ( A  X.  B ) ph  <->  E. y  e.  A  E. z  e.  B  ps )
Distinct variable groups:    x, y, z, A    x, B, z    ph, y, z    ps, x    y, B
Allowed substitution hints:    ph( x)    ps( y,
z)

Proof of Theorem rexxp
StepHypRef Expression
1 iunxpconst 4719 . . 3  |-  U_ y  e.  A  ( {
y }  X.  B
)  =  ( A  X.  B )
21rexeqi 2695 . 2  |-  ( E. x  e.  U_  y  e.  A  ( {
y }  X.  B
) ph  <->  E. x  e.  ( A  X.  B )
ph )
3 ralxp.1 . . 3  |-  ( x  =  <. y ,  z
>.  ->  ( ph  <->  ps )
)
43rexiunxp 4804 . 2  |-  ( E. x  e.  U_  y  e.  A  ( {
y }  X.  B
) ph  <->  E. y  e.  A  E. z  e.  B  ps )
52, 4bitr3i 186 1  |-  ( E. x  e.  ( A  X.  B ) ph  <->  E. y  e.  A  E. z  e.  B  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364   E.wrex 2473   {csn 3618   <.cop 3621   U_ciun 3912    X. cxp 4657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-iun 3914  df-opab 4091  df-xp 4665  df-rel 4666
This theorem is referenced by:  rexxpf  4809  fnrnov  6064  foov  6065  ovelimab  6069  xpf1o  6900  cnref1o  9716  txbas  14426
  Copyright terms: Public domain W3C validator