| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elab3 | GIF version | ||
| Description: Membership in a class abstraction using implicit substitution. (Contributed by NM, 10-Nov-2000.) |
| Ref | Expression |
|---|---|
| elab3.1 | ⊢ (𝜓 → 𝐴 ∈ V) |
| elab3.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| elab3 | ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elab3.1 | . 2 ⊢ (𝜓 → 𝐴 ∈ V) | |
| 2 | elab3.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | elab3g 2925 | . 2 ⊢ ((𝜓 → 𝐴 ∈ V) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∈ wcel 2177 {cab 2192 Vcvv 2773 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 |
| This theorem is referenced by: elrnmpo 6066 isfi 6859 addnqprlemfl 7679 addnqprlemfu 7680 mulnqprlemfl 7695 mulnqprlemfu 7696 iswrd 11003 4sqlem2 12756 istps 14548 elply 15250 |
| Copyright terms: Public domain | W3C validator |