Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elab3 | GIF version |
Description: Membership in a class abstraction using implicit substitution. (Contributed by NM, 10-Nov-2000.) |
Ref | Expression |
---|---|
elab3.1 | ⊢ (𝜓 → 𝐴 ∈ V) |
elab3.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
elab3 | ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elab3.1 | . 2 ⊢ (𝜓 → 𝐴 ∈ V) | |
2 | elab3.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | elab3g 2881 | . 2 ⊢ ((𝜓 → 𝐴 ∈ V) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1348 ∈ wcel 2141 {cab 2156 Vcvv 2730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 |
This theorem is referenced by: elrnmpo 5966 isfi 6739 addnqprlemfl 7521 addnqprlemfu 7522 mulnqprlemfl 7537 mulnqprlemfu 7538 4sqlem2 12341 istps 12824 |
Copyright terms: Public domain | W3C validator |