ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isfi Unicode version

Theorem isfi 6761
Description: Express " A is finite". Definition 10.29 of [TakeutiZaring] p. 91 (whose " Fin " is a predicate instead of a class). (Contributed by NM, 22-Aug-2008.)
Assertion
Ref Expression
isfi  |-  ( A  e.  Fin  <->  E. x  e.  om  A  ~~  x
)
Distinct variable group:    x, A

Proof of Theorem isfi
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-fin 6743 . . 3  |-  Fin  =  { y  |  E. x  e.  om  y  ~~  x }
21eleq2i 2244 . 2  |-  ( A  e.  Fin  <->  A  e.  { y  |  E. x  e.  om  y  ~~  x } )
3 relen 6744 . . . . 5  |-  Rel  ~~
43brrelex1i 4670 . . . 4  |-  ( A 
~~  x  ->  A  e.  _V )
54rexlimivw 2590 . . 3  |-  ( E. x  e.  om  A  ~~  x  ->  A  e. 
_V )
6 breq1 4007 . . . 4  |-  ( y  =  A  ->  (
y  ~~  x  <->  A  ~~  x ) )
76rexbidv 2478 . . 3  |-  ( y  =  A  ->  ( E. x  e.  om  y  ~~  x  <->  E. x  e.  om  A  ~~  x
) )
85, 7elab3 2890 . 2  |-  ( A  e.  { y  |  E. x  e.  om  y  ~~  x }  <->  E. x  e.  om  A  ~~  x
)
92, 8bitri 184 1  |-  ( A  e.  Fin  <->  E. x  e.  om  A  ~~  x
)
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1353    e. wcel 2148   {cab 2163   E.wrex 2456   _Vcvv 2738   class class class wbr 4004   omcom 4590    ~~ cen 6738   Fincfn 6740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-br 4005  df-opab 4066  df-xp 4633  df-rel 4634  df-en 6741  df-fin 6743
This theorem is referenced by:  snfig  6814  fict  6868  fidceq  6869  nnfi  6872  enfi  6873  ssfilem  6875  dif1enen  6880  php5fin  6882  fisbth  6883  fin0  6885  fin0or  6886  diffitest  6887  findcard  6888  findcard2  6889  findcard2s  6890  diffisn  6893  infnfi  6895  fientri3  6914  unsnfi  6918  unsnfidcex  6919  unsnfidcel  6920  fiintim  6928  fidcenumlemim  6951  finnum  7182  hashcl  10761  hashen  10764  fihashdom  10783  hashun  10785  zfz1iso  10821
  Copyright terms: Public domain W3C validator