| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isfi | Unicode version | ||
| Description: Express " |
| Ref | Expression |
|---|---|
| isfi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fin 6830 |
. . 3
| |
| 2 | 1 | eleq2i 2272 |
. 2
|
| 3 | relen 6831 |
. . . . 5
| |
| 4 | 3 | brrelex1i 4718 |
. . . 4
|
| 5 | 4 | rexlimivw 2619 |
. . 3
|
| 6 | breq1 4047 |
. . . 4
| |
| 7 | 6 | rexbidv 2507 |
. . 3
|
| 8 | 5, 7 | elab3 2925 |
. 2
|
| 9 | 2, 8 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-opab 4106 df-xp 4681 df-rel 4682 df-en 6828 df-fin 6830 |
| This theorem is referenced by: snfig 6906 fict 6965 fidceq 6966 nnfi 6969 enfi 6970 ssfilem 6972 dif1enen 6977 php5fin 6979 fisbth 6980 fin0 6982 fin0or 6983 diffitest 6984 findcard 6985 findcard2 6986 findcard2s 6987 diffisn 6990 infnfi 6992 fientri3 7012 unsnfi 7016 unsnfidcex 7017 unsnfidcel 7018 fiintim 7028 fidcenumlemim 7054 finnum 7290 ficardon 7296 hashcl 10926 hashen 10929 fihashdom 10948 hashun 10950 zfz1iso 10986 |
| Copyright terms: Public domain | W3C validator |