ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isfi Unicode version

Theorem isfi 6852
Description: Express " A is finite". Definition 10.29 of [TakeutiZaring] p. 91 (whose " Fin " is a predicate instead of a class). (Contributed by NM, 22-Aug-2008.)
Assertion
Ref Expression
isfi  |-  ( A  e.  Fin  <->  E. x  e.  om  A  ~~  x
)
Distinct variable group:    x, A

Proof of Theorem isfi
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-fin 6830 . . 3  |-  Fin  =  { y  |  E. x  e.  om  y  ~~  x }
21eleq2i 2272 . 2  |-  ( A  e.  Fin  <->  A  e.  { y  |  E. x  e.  om  y  ~~  x } )
3 relen 6831 . . . . 5  |-  Rel  ~~
43brrelex1i 4718 . . . 4  |-  ( A 
~~  x  ->  A  e.  _V )
54rexlimivw 2619 . . 3  |-  ( E. x  e.  om  A  ~~  x  ->  A  e. 
_V )
6 breq1 4047 . . . 4  |-  ( y  =  A  ->  (
y  ~~  x  <->  A  ~~  x ) )
76rexbidv 2507 . . 3  |-  ( y  =  A  ->  ( E. x  e.  om  y  ~~  x  <->  E. x  e.  om  A  ~~  x
) )
85, 7elab3 2925 . 2  |-  ( A  e.  { y  |  E. x  e.  om  y  ~~  x }  <->  E. x  e.  om  A  ~~  x
)
92, 8bitri 184 1  |-  ( A  e.  Fin  <->  E. x  e.  om  A  ~~  x
)
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1373    e. wcel 2176   {cab 2191   E.wrex 2485   _Vcvv 2772   class class class wbr 4044   omcom 4638    ~~ cen 6825   Fincfn 6827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-xp 4681  df-rel 4682  df-en 6828  df-fin 6830
This theorem is referenced by:  snfig  6906  fict  6965  fidceq  6966  nnfi  6969  enfi  6970  ssfilem  6972  dif1enen  6977  php5fin  6979  fisbth  6980  fin0  6982  fin0or  6983  diffitest  6984  findcard  6985  findcard2  6986  findcard2s  6987  diffisn  6990  infnfi  6992  fientri3  7012  unsnfi  7016  unsnfidcex  7017  unsnfidcel  7018  fiintim  7028  fidcenumlemim  7054  finnum  7290  ficardon  7296  hashcl  10926  hashen  10929  fihashdom  10948  hashun  10950  zfz1iso  10986
  Copyright terms: Public domain W3C validator