ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isfi Unicode version

Theorem isfi 6820
Description: Express " A is finite". Definition 10.29 of [TakeutiZaring] p. 91 (whose " Fin " is a predicate instead of a class). (Contributed by NM, 22-Aug-2008.)
Assertion
Ref Expression
isfi  |-  ( A  e.  Fin  <->  E. x  e.  om  A  ~~  x
)
Distinct variable group:    x, A

Proof of Theorem isfi
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-fin 6802 . . 3  |-  Fin  =  { y  |  E. x  e.  om  y  ~~  x }
21eleq2i 2263 . 2  |-  ( A  e.  Fin  <->  A  e.  { y  |  E. x  e.  om  y  ~~  x } )
3 relen 6803 . . . . 5  |-  Rel  ~~
43brrelex1i 4706 . . . 4  |-  ( A 
~~  x  ->  A  e.  _V )
54rexlimivw 2610 . . 3  |-  ( E. x  e.  om  A  ~~  x  ->  A  e. 
_V )
6 breq1 4036 . . . 4  |-  ( y  =  A  ->  (
y  ~~  x  <->  A  ~~  x ) )
76rexbidv 2498 . . 3  |-  ( y  =  A  ->  ( E. x  e.  om  y  ~~  x  <->  E. x  e.  om  A  ~~  x
) )
85, 7elab3 2916 . 2  |-  ( A  e.  { y  |  E. x  e.  om  y  ~~  x }  <->  E. x  e.  om  A  ~~  x
)
92, 8bitri 184 1  |-  ( A  e.  Fin  <->  E. x  e.  om  A  ~~  x
)
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364    e. wcel 2167   {cab 2182   E.wrex 2476   _Vcvv 2763   class class class wbr 4033   omcom 4626    ~~ cen 6797   Fincfn 6799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-xp 4669  df-rel 4670  df-en 6800  df-fin 6802
This theorem is referenced by:  snfig  6873  fict  6929  fidceq  6930  nnfi  6933  enfi  6934  ssfilem  6936  dif1enen  6941  php5fin  6943  fisbth  6944  fin0  6946  fin0or  6947  diffitest  6948  findcard  6949  findcard2  6950  findcard2s  6951  diffisn  6954  infnfi  6956  fientri3  6976  unsnfi  6980  unsnfidcex  6981  unsnfidcel  6982  fiintim  6992  fidcenumlemim  7018  finnum  7250  hashcl  10873  hashen  10876  fihashdom  10895  hashun  10897  zfz1iso  10933
  Copyright terms: Public domain W3C validator