Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isfi | Unicode version |
Description: Express " is finite". Definition 10.29 of [TakeutiZaring] p. 91 (whose " " is a predicate instead of a class). (Contributed by NM, 22-Aug-2008.) |
Ref | Expression |
---|---|
isfi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fin 6721 | . . 3 | |
2 | 1 | eleq2i 2237 | . 2 |
3 | relen 6722 | . . . . 5 | |
4 | 3 | brrelex1i 4654 | . . . 4 |
5 | 4 | rexlimivw 2583 | . . 3 |
6 | breq1 3992 | . . . 4 | |
7 | 6 | rexbidv 2471 | . . 3 |
8 | 5, 7 | elab3 2882 | . 2 |
9 | 2, 8 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wceq 1348 wcel 2141 cab 2156 wrex 2449 cvv 2730 class class class wbr 3989 com 4574 cen 6716 cfn 6718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-xp 4617 df-rel 4618 df-en 6719 df-fin 6721 |
This theorem is referenced by: snfig 6792 fict 6846 fidceq 6847 nnfi 6850 enfi 6851 ssfilem 6853 dif1enen 6858 php5fin 6860 fisbth 6861 fin0 6863 fin0or 6864 diffitest 6865 findcard 6866 findcard2 6867 findcard2s 6868 diffisn 6871 infnfi 6873 fientri3 6892 unsnfi 6896 unsnfidcex 6897 unsnfidcel 6898 fiintim 6906 fidcenumlemim 6929 finnum 7160 hashcl 10715 hashen 10718 fihashdom 10738 hashun 10740 zfz1iso 10776 |
Copyright terms: Public domain | W3C validator |