| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isfi | Unicode version | ||
| Description: Express " |
| Ref | Expression |
|---|---|
| isfi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fin 6832 |
. . 3
| |
| 2 | 1 | eleq2i 2272 |
. 2
|
| 3 | relen 6833 |
. . . . 5
| |
| 4 | 3 | brrelex1i 4719 |
. . . 4
|
| 5 | 4 | rexlimivw 2619 |
. . 3
|
| 6 | breq1 4048 |
. . . 4
| |
| 7 | 6 | rexbidv 2507 |
. . 3
|
| 8 | 5, 7 | elab3 2925 |
. 2
|
| 9 | 2, 8 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4046 df-opab 4107 df-xp 4682 df-rel 4683 df-en 6830 df-fin 6832 |
| This theorem is referenced by: snfig 6908 fict 6967 fidceq 6968 nnfi 6971 enfi 6972 ssfilem 6974 dif1enen 6979 php5fin 6981 fisbth 6982 fin0 6984 fin0or 6985 diffitest 6986 findcard 6987 findcard2 6988 findcard2s 6989 diffisn 6992 infnfi 6994 fientri3 7014 unsnfi 7018 unsnfidcex 7019 unsnfidcel 7020 fiintim 7030 fidcenumlemim 7056 finnum 7292 ficardon 7298 hashcl 10928 hashen 10931 fihashdom 10950 hashun 10952 zfz1iso 10988 |
| Copyright terms: Public domain | W3C validator |