| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isfi | Unicode version | ||
| Description: Express " |
| Ref | Expression |
|---|---|
| isfi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fin 6890 |
. . 3
| |
| 2 | 1 | eleq2i 2296 |
. 2
|
| 3 | relen 6891 |
. . . . 5
| |
| 4 | 3 | brrelex1i 4762 |
. . . 4
|
| 5 | 4 | rexlimivw 2644 |
. . 3
|
| 6 | breq1 4086 |
. . . 4
| |
| 7 | 6 | rexbidv 2531 |
. . 3
|
| 8 | 5, 7 | elab3 2955 |
. 2
|
| 9 | 2, 8 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-xp 4725 df-rel 4726 df-en 6888 df-fin 6890 |
| This theorem is referenced by: snfig 6967 fict 7030 fidceq 7031 nnfi 7034 enfi 7035 ssfilem 7037 dif1enen 7042 php5fin 7044 fisbth 7045 fin0 7047 fin0or 7048 diffitest 7049 findcard 7050 findcard2 7051 findcard2s 7052 diffisn 7055 infnfi 7057 fientri3 7077 unsnfi 7081 unsnfidcex 7082 unsnfidcel 7083 fiintim 7093 fidcenumlemim 7119 finnum 7355 ficardon 7361 hashcl 11003 hashen 11006 fihashdom 11025 hashun 11027 zfz1iso 11063 |
| Copyright terms: Public domain | W3C validator |