ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isfi Unicode version

Theorem isfi 6854
Description: Express " A is finite". Definition 10.29 of [TakeutiZaring] p. 91 (whose " Fin " is a predicate instead of a class). (Contributed by NM, 22-Aug-2008.)
Assertion
Ref Expression
isfi  |-  ( A  e.  Fin  <->  E. x  e.  om  A  ~~  x
)
Distinct variable group:    x, A

Proof of Theorem isfi
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-fin 6832 . . 3  |-  Fin  =  { y  |  E. x  e.  om  y  ~~  x }
21eleq2i 2272 . 2  |-  ( A  e.  Fin  <->  A  e.  { y  |  E. x  e.  om  y  ~~  x } )
3 relen 6833 . . . . 5  |-  Rel  ~~
43brrelex1i 4719 . . . 4  |-  ( A 
~~  x  ->  A  e.  _V )
54rexlimivw 2619 . . 3  |-  ( E. x  e.  om  A  ~~  x  ->  A  e. 
_V )
6 breq1 4048 . . . 4  |-  ( y  =  A  ->  (
y  ~~  x  <->  A  ~~  x ) )
76rexbidv 2507 . . 3  |-  ( y  =  A  ->  ( E. x  e.  om  y  ~~  x  <->  E. x  e.  om  A  ~~  x
) )
85, 7elab3 2925 . 2  |-  ( A  e.  { y  |  E. x  e.  om  y  ~~  x }  <->  E. x  e.  om  A  ~~  x
)
92, 8bitri 184 1  |-  ( A  e.  Fin  <->  E. x  e.  om  A  ~~  x
)
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1373    e. wcel 2176   {cab 2191   E.wrex 2485   _Vcvv 2772   class class class wbr 4045   omcom 4639    ~~ cen 6827   Fincfn 6829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4046  df-opab 4107  df-xp 4682  df-rel 4683  df-en 6830  df-fin 6832
This theorem is referenced by:  snfig  6908  fict  6967  fidceq  6968  nnfi  6971  enfi  6972  ssfilem  6974  dif1enen  6979  php5fin  6981  fisbth  6982  fin0  6984  fin0or  6985  diffitest  6986  findcard  6987  findcard2  6988  findcard2s  6989  diffisn  6992  infnfi  6994  fientri3  7014  unsnfi  7018  unsnfidcex  7019  unsnfidcel  7020  fiintim  7030  fidcenumlemim  7056  finnum  7292  ficardon  7298  hashcl  10928  hashen  10931  fihashdom  10950  hashun  10952  zfz1iso  10988
  Copyright terms: Public domain W3C validator