| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isfi | Unicode version | ||
| Description: Express " |
| Ref | Expression |
|---|---|
| isfi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fin 6853 |
. . 3
| |
| 2 | 1 | eleq2i 2274 |
. 2
|
| 3 | relen 6854 |
. . . . 5
| |
| 4 | 3 | brrelex1i 4736 |
. . . 4
|
| 5 | 4 | rexlimivw 2621 |
. . 3
|
| 6 | breq1 4062 |
. . . 4
| |
| 7 | 6 | rexbidv 2509 |
. . 3
|
| 8 | 5, 7 | elab3 2932 |
. 2
|
| 9 | 2, 8 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-xp 4699 df-rel 4700 df-en 6851 df-fin 6853 |
| This theorem is referenced by: snfig 6930 fict 6991 fidceq 6992 nnfi 6995 enfi 6996 ssfilem 6998 dif1enen 7003 php5fin 7005 fisbth 7006 fin0 7008 fin0or 7009 diffitest 7010 findcard 7011 findcard2 7012 findcard2s 7013 diffisn 7016 infnfi 7018 fientri3 7038 unsnfi 7042 unsnfidcex 7043 unsnfidcel 7044 fiintim 7054 fidcenumlemim 7080 finnum 7316 ficardon 7322 hashcl 10963 hashen 10966 fihashdom 10985 hashun 10987 zfz1iso 11023 |
| Copyright terms: Public domain | W3C validator |