ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  istps Unicode version

Theorem istps 12670
Description: Express the predicate "is a topological space". (Contributed by Mario Carneiro, 13-Aug-2015.)
Hypotheses
Ref Expression
istps.a  |-  A  =  ( Base `  K
)
istps.j  |-  J  =  ( TopOpen `  K )
Assertion
Ref Expression
istps  |-  ( K  e.  TopSp 
<->  J  e.  (TopOn `  A ) )

Proof of Theorem istps
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 df-topsp 12669 . . 3  |-  TopSp  =  {
f  |  ( TopOpen `  f )  e.  (TopOn `  ( Base `  f
) ) }
21eleq2i 2233 . 2  |-  ( K  e.  TopSp 
<->  K  e.  { f  |  ( TopOpen `  f
)  e.  (TopOn `  ( Base `  f )
) } )
3 topontop 12652 . . . 4  |-  ( J  e.  (TopOn `  A
)  ->  J  e.  Top )
4 topnfn 12561 . . . . . . 7  |-  TopOpen  Fn  _V
5 fnrel 5286 . . . . . . 7  |-  ( TopOpen  Fn 
_V  ->  Rel  TopOpen )
64, 5ax-mp 5 . . . . . 6  |-  Rel  TopOpen
7 0opn 12644 . . . . . . 7  |-  ( J  e.  Top  ->  (/)  e.  J
)
8 istps.j . . . . . . 7  |-  J  =  ( TopOpen `  K )
97, 8eleqtrdi 2259 . . . . . 6  |-  ( J  e.  Top  ->  (/)  e.  (
TopOpen `  K ) )
10 relelfvdm 5518 . . . . . 6  |-  ( ( Rel  TopOpen  /\  (/)  e.  (
TopOpen `  K ) )  ->  K  e.  dom  TopOpen )
116, 9, 10sylancr 411 . . . . 5  |-  ( J  e.  Top  ->  K  e.  dom  TopOpen )
1211elexd 2739 . . . 4  |-  ( J  e.  Top  ->  K  e.  _V )
133, 12syl 14 . . 3  |-  ( J  e.  (TopOn `  A
)  ->  K  e.  _V )
14 fveq2 5486 . . . . 5  |-  ( f  =  K  ->  ( TopOpen
`  f )  =  ( TopOpen `  K )
)
1514, 8eqtr4di 2217 . . . 4  |-  ( f  =  K  ->  ( TopOpen
`  f )  =  J )
16 fveq2 5486 . . . . . 6  |-  ( f  =  K  ->  ( Base `  f )  =  ( Base `  K
) )
17 istps.a . . . . . 6  |-  A  =  ( Base `  K
)
1816, 17eqtr4di 2217 . . . . 5  |-  ( f  =  K  ->  ( Base `  f )  =  A )
1918fveq2d 5490 . . . 4  |-  ( f  =  K  ->  (TopOn `  ( Base `  f
) )  =  (TopOn `  A ) )
2015, 19eleq12d 2237 . . 3  |-  ( f  =  K  ->  (
( TopOpen `  f )  e.  (TopOn `  ( Base `  f ) )  <->  J  e.  (TopOn `  A ) ) )
2113, 20elab3 2878 . 2  |-  ( K  e.  { f  |  ( TopOpen `  f )  e.  (TopOn `  ( Base `  f ) ) }  <-> 
J  e.  (TopOn `  A ) )
222, 21bitri 183 1  |-  ( K  e.  TopSp 
<->  J  e.  (TopOn `  A ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1343    e. wcel 2136   {cab 2151   _Vcvv 2726   (/)c0 3409   dom cdm 4604   Rel wrel 4609    Fn wfn 5183   ` cfv 5188   Basecbs 12394   TopOpenctopn 12557   Topctop 12635  TopOnctopon 12648   TopSpctps 12668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-cnex 7844  ax-resscn 7845  ax-1re 7847  ax-addrcl 7850
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-5 8919  df-6 8920  df-7 8921  df-8 8922  df-9 8923  df-ndx 12397  df-slot 12398  df-base 12400  df-tset 12476  df-rest 12558  df-topn 12559  df-top 12636  df-topon 12649  df-topsp 12669
This theorem is referenced by:  istps2  12671  tpspropd  12674  tsettps  12676  isxms2  13092
  Copyright terms: Public domain W3C validator