ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  istps Unicode version

Theorem istps 14200
Description: Express the predicate "is a topological space". (Contributed by Mario Carneiro, 13-Aug-2015.)
Hypotheses
Ref Expression
istps.a  |-  A  =  ( Base `  K
)
istps.j  |-  J  =  ( TopOpen `  K )
Assertion
Ref Expression
istps  |-  ( K  e.  TopSp 
<->  J  e.  (TopOn `  A ) )

Proof of Theorem istps
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 df-topsp 14199 . . 3  |-  TopSp  =  {
f  |  ( TopOpen `  f )  e.  (TopOn `  ( Base `  f
) ) }
21eleq2i 2260 . 2  |-  ( K  e.  TopSp 
<->  K  e.  { f  |  ( TopOpen `  f
)  e.  (TopOn `  ( Base `  f )
) } )
3 topontop 14182 . . . 4  |-  ( J  e.  (TopOn `  A
)  ->  J  e.  Top )
4 topnfn 12855 . . . . . . 7  |-  TopOpen  Fn  _V
5 fnrel 5352 . . . . . . 7  |-  ( TopOpen  Fn 
_V  ->  Rel  TopOpen )
64, 5ax-mp 5 . . . . . 6  |-  Rel  TopOpen
7 0opn 14174 . . . . . . 7  |-  ( J  e.  Top  ->  (/)  e.  J
)
8 istps.j . . . . . . 7  |-  J  =  ( TopOpen `  K )
97, 8eleqtrdi 2286 . . . . . 6  |-  ( J  e.  Top  ->  (/)  e.  (
TopOpen `  K ) )
10 relelfvdm 5586 . . . . . 6  |-  ( ( Rel  TopOpen  /\  (/)  e.  (
TopOpen `  K ) )  ->  K  e.  dom  TopOpen )
116, 9, 10sylancr 414 . . . . 5  |-  ( J  e.  Top  ->  K  e.  dom  TopOpen )
1211elexd 2773 . . . 4  |-  ( J  e.  Top  ->  K  e.  _V )
133, 12syl 14 . . 3  |-  ( J  e.  (TopOn `  A
)  ->  K  e.  _V )
14 fveq2 5554 . . . . 5  |-  ( f  =  K  ->  ( TopOpen
`  f )  =  ( TopOpen `  K )
)
1514, 8eqtr4di 2244 . . . 4  |-  ( f  =  K  ->  ( TopOpen
`  f )  =  J )
16 fveq2 5554 . . . . . 6  |-  ( f  =  K  ->  ( Base `  f )  =  ( Base `  K
) )
17 istps.a . . . . . 6  |-  A  =  ( Base `  K
)
1816, 17eqtr4di 2244 . . . . 5  |-  ( f  =  K  ->  ( Base `  f )  =  A )
1918fveq2d 5558 . . . 4  |-  ( f  =  K  ->  (TopOn `  ( Base `  f
) )  =  (TopOn `  A ) )
2015, 19eleq12d 2264 . . 3  |-  ( f  =  K  ->  (
( TopOpen `  f )  e.  (TopOn `  ( Base `  f ) )  <->  J  e.  (TopOn `  A ) ) )
2113, 20elab3 2912 . 2  |-  ( K  e.  { f  |  ( TopOpen `  f )  e.  (TopOn `  ( Base `  f ) ) }  <-> 
J  e.  (TopOn `  A ) )
222, 21bitri 184 1  |-  ( K  e.  TopSp 
<->  J  e.  (TopOn `  A ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364    e. wcel 2164   {cab 2179   _Vcvv 2760   (/)c0 3446   dom cdm 4659   Rel wrel 4664    Fn wfn 5249   ` cfv 5254   Basecbs 12618   TopOpenctopn 12851   Topctop 14165  TopOnctopon 14178   TopSpctps 14198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-7 9046  df-8 9047  df-9 9048  df-ndx 12621  df-slot 12622  df-base 12624  df-tset 12714  df-rest 12852  df-topn 12853  df-top 14166  df-topon 14179  df-topsp 14199
This theorem is referenced by:  istps2  14201  tpspropd  14204  tsettps  14206  isxms2  14620
  Copyright terms: Public domain W3C validator