ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  istps Unicode version

Theorem istps 12824
Description: Express the predicate "is a topological space". (Contributed by Mario Carneiro, 13-Aug-2015.)
Hypotheses
Ref Expression
istps.a  |-  A  =  ( Base `  K
)
istps.j  |-  J  =  ( TopOpen `  K )
Assertion
Ref Expression
istps  |-  ( K  e.  TopSp 
<->  J  e.  (TopOn `  A ) )

Proof of Theorem istps
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 df-topsp 12823 . . 3  |-  TopSp  =  {
f  |  ( TopOpen `  f )  e.  (TopOn `  ( Base `  f
) ) }
21eleq2i 2237 . 2  |-  ( K  e.  TopSp 
<->  K  e.  { f  |  ( TopOpen `  f
)  e.  (TopOn `  ( Base `  f )
) } )
3 topontop 12806 . . . 4  |-  ( J  e.  (TopOn `  A
)  ->  J  e.  Top )
4 topnfn 12584 . . . . . . 7  |-  TopOpen  Fn  _V
5 fnrel 5296 . . . . . . 7  |-  ( TopOpen  Fn 
_V  ->  Rel  TopOpen )
64, 5ax-mp 5 . . . . . 6  |-  Rel  TopOpen
7 0opn 12798 . . . . . . 7  |-  ( J  e.  Top  ->  (/)  e.  J
)
8 istps.j . . . . . . 7  |-  J  =  ( TopOpen `  K )
97, 8eleqtrdi 2263 . . . . . 6  |-  ( J  e.  Top  ->  (/)  e.  (
TopOpen `  K ) )
10 relelfvdm 5528 . . . . . 6  |-  ( ( Rel  TopOpen  /\  (/)  e.  (
TopOpen `  K ) )  ->  K  e.  dom  TopOpen )
116, 9, 10sylancr 412 . . . . 5  |-  ( J  e.  Top  ->  K  e.  dom  TopOpen )
1211elexd 2743 . . . 4  |-  ( J  e.  Top  ->  K  e.  _V )
133, 12syl 14 . . 3  |-  ( J  e.  (TopOn `  A
)  ->  K  e.  _V )
14 fveq2 5496 . . . . 5  |-  ( f  =  K  ->  ( TopOpen
`  f )  =  ( TopOpen `  K )
)
1514, 8eqtr4di 2221 . . . 4  |-  ( f  =  K  ->  ( TopOpen
`  f )  =  J )
16 fveq2 5496 . . . . . 6  |-  ( f  =  K  ->  ( Base `  f )  =  ( Base `  K
) )
17 istps.a . . . . . 6  |-  A  =  ( Base `  K
)
1816, 17eqtr4di 2221 . . . . 5  |-  ( f  =  K  ->  ( Base `  f )  =  A )
1918fveq2d 5500 . . . 4  |-  ( f  =  K  ->  (TopOn `  ( Base `  f
) )  =  (TopOn `  A ) )
2015, 19eleq12d 2241 . . 3  |-  ( f  =  K  ->  (
( TopOpen `  f )  e.  (TopOn `  ( Base `  f ) )  <->  J  e.  (TopOn `  A ) ) )
2113, 20elab3 2882 . 2  |-  ( K  e.  { f  |  ( TopOpen `  f )  e.  (TopOn `  ( Base `  f ) ) }  <-> 
J  e.  (TopOn `  A ) )
222, 21bitri 183 1  |-  ( K  e.  TopSp 
<->  J  e.  (TopOn `  A ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1348    e. wcel 2141   {cab 2156   _Vcvv 2730   (/)c0 3414   dom cdm 4611   Rel wrel 4616    Fn wfn 5193   ` cfv 5198   Basecbs 12416   TopOpenctopn 12580   Topctop 12789  TopOnctopon 12802   TopSpctps 12822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-5 8940  df-6 8941  df-7 8942  df-8 8943  df-9 8944  df-ndx 12419  df-slot 12420  df-base 12422  df-tset 12499  df-rest 12581  df-topn 12582  df-top 12790  df-topon 12803  df-topsp 12823
This theorem is referenced by:  istps2  12825  tpspropd  12828  tsettps  12830  isxms2  13246
  Copyright terms: Public domain W3C validator