ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrnmpo Unicode version

Theorem elrnmpo 6082
Description: Membership in the range of an operation class abstraction. (Contributed by NM, 1-Aug-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
rngop.1  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
elrnmpo.1  |-  C  e. 
_V
Assertion
Ref Expression
elrnmpo  |-  ( D  e.  ran  F  <->  E. x  e.  A  E. y  e.  B  D  =  C )
Distinct variable groups:    y, A    x, y, D
Allowed substitution hints:    A( x)    B( x, y)    C( x, y)    F( x, y)

Proof of Theorem elrnmpo
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 rngop.1 . . . 4  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
21rnmpo 6079 . . 3  |-  ran  F  =  { z  |  E. x  e.  A  E. y  e.  B  z  =  C }
32eleq2i 2274 . 2  |-  ( D  e.  ran  F  <->  D  e.  { z  |  E. x  e.  A  E. y  e.  B  z  =  C } )
4 elrnmpo.1 . . . . . 6  |-  C  e. 
_V
5 eleq1 2270 . . . . . 6  |-  ( D  =  C  ->  ( D  e.  _V  <->  C  e.  _V ) )
64, 5mpbiri 168 . . . . 5  |-  ( D  =  C  ->  D  e.  _V )
76rexlimivw 2621 . . . 4  |-  ( E. y  e.  B  D  =  C  ->  D  e. 
_V )
87rexlimivw 2621 . . 3  |-  ( E. x  e.  A  E. y  e.  B  D  =  C  ->  D  e. 
_V )
9 eqeq1 2214 . . . 4  |-  ( z  =  D  ->  (
z  =  C  <->  D  =  C ) )
1092rexbidv 2533 . . 3  |-  ( z  =  D  ->  ( E. x  e.  A  E. y  e.  B  z  =  C  <->  E. x  e.  A  E. y  e.  B  D  =  C ) )
118, 10elab3 2932 . 2  |-  ( D  e.  { z  |  E. x  e.  A  E. y  e.  B  z  =  C }  <->  E. x  e.  A  E. y  e.  B  D  =  C )
123, 11bitri 184 1  |-  ( D  e.  ran  F  <->  E. x  e.  A  E. y  e.  B  D  =  C )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1373    e. wcel 2178   {cab 2193   E.wrex 2487   _Vcvv 2776   ran crn 4694    e. cmpo 5969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-cnv 4701  df-dm 4703  df-rn 4704  df-oprab 5971  df-mpo 5972
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator