ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrnmpo Unicode version

Theorem elrnmpo 6118
Description: Membership in the range of an operation class abstraction. (Contributed by NM, 1-Aug-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
rngop.1  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
elrnmpo.1  |-  C  e. 
_V
Assertion
Ref Expression
elrnmpo  |-  ( D  e.  ran  F  <->  E. x  e.  A  E. y  e.  B  D  =  C )
Distinct variable groups:    y, A    x, y, D
Allowed substitution hints:    A( x)    B( x, y)    C( x, y)    F( x, y)

Proof of Theorem elrnmpo
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 rngop.1 . . . 4  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
21rnmpo 6115 . . 3  |-  ran  F  =  { z  |  E. x  e.  A  E. y  e.  B  z  =  C }
32eleq2i 2296 . 2  |-  ( D  e.  ran  F  <->  D  e.  { z  |  E. x  e.  A  E. y  e.  B  z  =  C } )
4 elrnmpo.1 . . . . . 6  |-  C  e. 
_V
5 eleq1 2292 . . . . . 6  |-  ( D  =  C  ->  ( D  e.  _V  <->  C  e.  _V ) )
64, 5mpbiri 168 . . . . 5  |-  ( D  =  C  ->  D  e.  _V )
76rexlimivw 2644 . . . 4  |-  ( E. y  e.  B  D  =  C  ->  D  e. 
_V )
87rexlimivw 2644 . . 3  |-  ( E. x  e.  A  E. y  e.  B  D  =  C  ->  D  e. 
_V )
9 eqeq1 2236 . . . 4  |-  ( z  =  D  ->  (
z  =  C  <->  D  =  C ) )
1092rexbidv 2555 . . 3  |-  ( z  =  D  ->  ( E. x  e.  A  E. y  e.  B  z  =  C  <->  E. x  e.  A  E. y  e.  B  D  =  C ) )
118, 10elab3 2955 . 2  |-  ( D  e.  { z  |  E. x  e.  A  E. y  e.  B  z  =  C }  <->  E. x  e.  A  E. y  e.  B  D  =  C )
123, 11bitri 184 1  |-  ( D  e.  ran  F  <->  E. x  e.  A  E. y  e.  B  D  =  C )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1395    e. wcel 2200   {cab 2215   E.wrex 2509   _Vcvv 2799   ran crn 4720    e. cmpo 6003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-cnv 4727  df-dm 4729  df-rn 4730  df-oprab 6005  df-mpo 6006
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator