![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eldiftp | GIF version |
Description: Membership in a set with three elements removed. Similar to eldifsn 3734 and eldifpr 3634. (Contributed by David A. Wheeler, 22-Jul-2017.) |
Ref | Expression |
---|---|
eldiftp | ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶, 𝐷, 𝐸}) ↔ (𝐴 ∈ 𝐵 ∧ (𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ∧ 𝐴 ≠ 𝐸))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3153 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶, 𝐷, 𝐸}) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ {𝐶, 𝐷, 𝐸})) | |
2 | eltpg 3652 | . . . . 5 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝐶, 𝐷, 𝐸} ↔ (𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ∨ 𝐴 = 𝐸))) | |
3 | 2 | notbid 668 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (¬ 𝐴 ∈ {𝐶, 𝐷, 𝐸} ↔ ¬ (𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ∨ 𝐴 = 𝐸))) |
4 | ne3anior 2448 | . . . 4 ⊢ ((𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ∧ 𝐴 ≠ 𝐸) ↔ ¬ (𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ∨ 𝐴 = 𝐸)) | |
5 | 3, 4 | bitr4di 198 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (¬ 𝐴 ∈ {𝐶, 𝐷, 𝐸} ↔ (𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ∧ 𝐴 ≠ 𝐸))) |
6 | 5 | pm5.32i 454 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ {𝐶, 𝐷, 𝐸}) ↔ (𝐴 ∈ 𝐵 ∧ (𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ∧ 𝐴 ≠ 𝐸))) |
7 | 1, 6 | bitri 184 | 1 ⊢ (𝐴 ∈ (𝐵 ∖ {𝐶, 𝐷, 𝐸}) ↔ (𝐴 ∈ 𝐵 ∧ (𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ∧ 𝐴 ≠ 𝐸))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 104 ↔ wb 105 ∨ w3o 979 ∧ w3a 980 = wceq 1364 ∈ wcel 2160 ≠ wne 2360 ∖ cdif 3141 {ctp 3609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-v 2754 df-dif 3146 df-un 3148 df-sn 3613 df-pr 3614 df-tp 3615 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |