ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldiftp GIF version

Theorem eldiftp 3679
Description: Membership in a set with three elements removed. Similar to eldifsn 3760 and eldifpr 3660. (Contributed by David A. Wheeler, 22-Jul-2017.)
Assertion
Ref Expression
eldiftp (𝐴 ∈ (𝐵 ∖ {𝐶, 𝐷, 𝐸}) ↔ (𝐴𝐵 ∧ (𝐴𝐶𝐴𝐷𝐴𝐸)))

Proof of Theorem eldiftp
StepHypRef Expression
1 eldif 3175 . 2 (𝐴 ∈ (𝐵 ∖ {𝐶, 𝐷, 𝐸}) ↔ (𝐴𝐵 ∧ ¬ 𝐴 ∈ {𝐶, 𝐷, 𝐸}))
2 eltpg 3678 . . . . 5 (𝐴𝐵 → (𝐴 ∈ {𝐶, 𝐷, 𝐸} ↔ (𝐴 = 𝐶𝐴 = 𝐷𝐴 = 𝐸)))
32notbid 669 . . . 4 (𝐴𝐵 → (¬ 𝐴 ∈ {𝐶, 𝐷, 𝐸} ↔ ¬ (𝐴 = 𝐶𝐴 = 𝐷𝐴 = 𝐸)))
4 ne3anior 2464 . . . 4 ((𝐴𝐶𝐴𝐷𝐴𝐸) ↔ ¬ (𝐴 = 𝐶𝐴 = 𝐷𝐴 = 𝐸))
53, 4bitr4di 198 . . 3 (𝐴𝐵 → (¬ 𝐴 ∈ {𝐶, 𝐷, 𝐸} ↔ (𝐴𝐶𝐴𝐷𝐴𝐸)))
65pm5.32i 454 . 2 ((𝐴𝐵 ∧ ¬ 𝐴 ∈ {𝐶, 𝐷, 𝐸}) ↔ (𝐴𝐵 ∧ (𝐴𝐶𝐴𝐷𝐴𝐸)))
71, 6bitri 184 1 (𝐴 ∈ (𝐵 ∖ {𝐶, 𝐷, 𝐸}) ↔ (𝐴𝐵 ∧ (𝐴𝐶𝐴𝐷𝐴𝐸)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wb 105  w3o 980  w3a 981   = wceq 1373  wcel 2176  wne 2376  cdif 3163  {ctp 3635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-v 2774  df-dif 3168  df-un 3170  df-sn 3639  df-pr 3640  df-tp 3641
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator