ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blin2 Unicode version

Theorem blin2 14954
Description: Given any two balls and a point in their intersection, there is a ball contained in the intersection with the given center point. (Contributed by Mario Carneiro, 12-Nov-2013.)
Assertion
Ref Expression
blin2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( B  i^i  C ) )
Distinct variable groups:    x, B    x, C    x, D    x, P    x, X

Proof of Theorem blin2
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 527 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  D  e.  ( *Met `  X ) )
2 simprl 529 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  B  e.  ran  ( ball `  D ) )
3 simplr 528 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  P  e.  ( B  i^i  C ) )
43elin1d 3364 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  P  e.  B )
5 blss 14950 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  B  e.  ran  ( ball `  D )  /\  P  e.  B
)  ->  E. y  e.  RR+  ( P (
ball `  D )
y )  C_  B
)
61, 2, 4, 5syl3anc 1250 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  E. y  e.  RR+  ( P ( ball `  D
) y )  C_  B )
7 simprr 531 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  C  e.  ran  ( ball `  D ) )
83elin2d 3365 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  P  e.  C )
9 blss 14950 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  C  e.  ran  ( ball `  D )  /\  P  e.  C
)  ->  E. z  e.  RR+  ( P (
ball `  D )
z )  C_  C
)
101, 7, 8, 9syl3anc 1250 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  E. z  e.  RR+  ( P ( ball `  D
) z )  C_  C )
11 reeanv 2677 . . 3  |-  ( E. y  e.  RR+  E. z  e.  RR+  ( ( P ( ball `  D
) y )  C_  B  /\  ( P (
ball `  D )
z )  C_  C
)  <->  ( E. y  e.  RR+  ( P (
ball `  D )
y )  C_  B  /\  E. z  e.  RR+  ( P ( ball `  D
) z )  C_  C ) )
12 ss2in 3403 . . . . 5  |-  ( ( ( P ( ball `  D ) y ) 
C_  B  /\  ( P ( ball `  D
) z )  C_  C )  ->  (
( P ( ball `  D ) y )  i^i  ( P (
ball `  D )
z ) )  C_  ( B  i^i  C ) )
13 inss1 3395 . . . . . . . . . . 11  |-  ( B  i^i  C )  C_  B
14 blf 14932 . . . . . . . . . . . . . 14  |-  ( D  e.  ( *Met `  X )  ->  ( ball `  D ) : ( X  X.  RR* )
--> ~P X )
15 frn 5441 . . . . . . . . . . . . . 14  |-  ( (
ball `  D ) : ( X  X.  RR* ) --> ~P X  ->  ran  ( ball `  D
)  C_  ~P X
)
161, 14, 153syl 17 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  ran  ( ball `  D
)  C_  ~P X
)
1716, 2sseldd 3196 . . . . . . . . . . . 12  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  B  e.  ~P X
)
1817elpwid 3629 . . . . . . . . . . 11  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  B  C_  X )
1913, 18sstrid 3206 . . . . . . . . . 10  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  -> 
( B  i^i  C
)  C_  X )
2019, 3sseldd 3196 . . . . . . . . 9  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  P  e.  X )
211, 20jca 306 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  -> 
( D  e.  ( *Met `  X
)  /\  P  e.  X ) )
22 rpxr 9796 . . . . . . . . 9  |-  ( y  e.  RR+  ->  y  e. 
RR* )
23 rpxr 9796 . . . . . . . . 9  |-  ( z  e.  RR+  ->  z  e. 
RR* )
2422, 23anim12i 338 . . . . . . . 8  |-  ( ( y  e.  RR+  /\  z  e.  RR+ )  ->  (
y  e.  RR*  /\  z  e.  RR* ) )
25 blininf 14946 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  (
y  e.  RR*  /\  z  e.  RR* ) )  -> 
( ( P (
ball `  D )
y )  i^i  ( P ( ball `  D
) z ) )  =  ( P (
ball `  D )inf ( { y ,  z } ,  RR* ,  <  ) ) )
2621, 24, 25syl2an 289 . . . . . . 7  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  ( B  i^i  C
) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( ( P ( ball `  D
) y )  i^i  ( P ( ball `  D ) z ) )  =  ( P ( ball `  D
)inf ( { y ,  z } ,  RR* ,  <  ) ) )
2726sseq1d 3224 . . . . . 6  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  ( B  i^i  C
) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( (
( P ( ball `  D ) y )  i^i  ( P (
ball `  D )
z ) )  C_  ( B  i^i  C )  <-> 
( P ( ball `  D )inf ( { y ,  z } ,  RR* ,  <  )
)  C_  ( B  i^i  C ) ) )
28 xrminrpcl 11635 . . . . . . . 8  |-  ( ( y  e.  RR+  /\  z  e.  RR+ )  -> inf ( { y ,  z } ,  RR* ,  <  )  e.  RR+ )
29 oveq2 5962 . . . . . . . . . . 11  |-  ( x  = inf ( { y ,  z } ,  RR* ,  <  )  -> 
( P ( ball `  D ) x )  =  ( P (
ball `  D )inf ( { y ,  z } ,  RR* ,  <  ) ) )
3029sseq1d 3224 . . . . . . . . . 10  |-  ( x  = inf ( { y ,  z } ,  RR* ,  <  )  -> 
( ( P (
ball `  D )
x )  C_  ( B  i^i  C )  <->  ( P
( ball `  D )inf ( { y ,  z } ,  RR* ,  <  ) )  C_  ( B  i^i  C ) ) )
3130rspcev 2879 . . . . . . . . 9  |-  ( (inf ( { y ,  z } ,  RR* ,  <  )  e.  RR+  /\  ( P ( ball `  D )inf ( { y ,  z } ,  RR* ,  <  )
)  C_  ( B  i^i  C ) )  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( B  i^i  C ) )
3231ex 115 . . . . . . . 8  |-  (inf ( { y ,  z } ,  RR* ,  <  )  e.  RR+  ->  ( ( P ( ball `  D
)inf ( { y ,  z } ,  RR* ,  <  ) ) 
C_  ( B  i^i  C )  ->  E. x  e.  RR+  ( P (
ball `  D )
x )  C_  ( B  i^i  C ) ) )
3328, 32syl 14 . . . . . . 7  |-  ( ( y  e.  RR+  /\  z  e.  RR+ )  ->  (
( P ( ball `  D )inf ( { y ,  z } ,  RR* ,  <  )
)  C_  ( B  i^i  C )  ->  E. x  e.  RR+  ( P (
ball `  D )
x )  C_  ( B  i^i  C ) ) )
3433adantl 277 . . . . . 6  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  ( B  i^i  C
) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( ( P ( ball `  D
)inf ( { y ,  z } ,  RR* ,  <  ) ) 
C_  ( B  i^i  C )  ->  E. x  e.  RR+  ( P (
ball `  D )
x )  C_  ( B  i^i  C ) ) )
3527, 34sylbid 150 . . . . 5  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  ( B  i^i  C
) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( (
( P ( ball `  D ) y )  i^i  ( P (
ball `  D )
z ) )  C_  ( B  i^i  C )  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( B  i^i  C ) ) )
3612, 35syl5 32 . . . 4  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  ( B  i^i  C
) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( (
( P ( ball `  D ) y ) 
C_  B  /\  ( P ( ball `  D
) z )  C_  C )  ->  E. x  e.  RR+  ( P (
ball `  D )
x )  C_  ( B  i^i  C ) ) )
3736rexlimdvva 2632 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  -> 
( E. y  e.  RR+  E. z  e.  RR+  ( ( P (
ball `  D )
y )  C_  B  /\  ( P ( ball `  D ) z ) 
C_  C )  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( B  i^i  C ) ) )
3811, 37biimtrrid 153 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  -> 
( ( E. y  e.  RR+  ( P (
ball `  D )
y )  C_  B  /\  E. z  e.  RR+  ( P ( ball `  D
) z )  C_  C )  ->  E. x  e.  RR+  ( P (
ball `  D )
x )  C_  ( B  i^i  C ) ) )
396, 10, 38mp2and 433 1  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( B  i^i  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   E.wrex 2486    i^i cin 3167    C_ wss 3168   ~Pcpw 3618   {cpr 3636    X. cxp 4678   ran crn 4681   -->wf 5273   ` cfv 5277  (class class class)co 5954  infcinf 7097   RR*cxr 8119    < clt 8120   RR+crp 9788   *Metcxmet 14348   ballcbl 14350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-iinf 4641  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-mulrcl 8037  ax-addcom 8038  ax-mulcom 8039  ax-addass 8040  ax-mulass 8041  ax-distr 8042  ax-i2m1 8043  ax-0lt1 8044  ax-1rid 8045  ax-0id 8046  ax-rnegex 8047  ax-precex 8048  ax-cnre 8049  ax-pre-ltirr 8050  ax-pre-ltwlin 8051  ax-pre-lttrn 8052  ax-pre-apti 8053  ax-pre-ltadd 8054  ax-pre-mulgt0 8055  ax-pre-mulext 8056  ax-arch 8057  ax-caucvg 8058
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-if 3574  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-tr 4148  df-id 4345  df-po 4348  df-iso 4349  df-iord 4418  df-on 4420  df-ilim 4421  df-suc 4423  df-iom 4644  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-isom 5286  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-recs 6401  df-frec 6487  df-map 6747  df-sup 7098  df-inf 7099  df-pnf 8122  df-mnf 8123  df-xr 8124  df-ltxr 8125  df-le 8126  df-sub 8258  df-neg 8259  df-reap 8661  df-ap 8668  df-div 8759  df-inn 9050  df-2 9108  df-3 9109  df-4 9110  df-n0 9309  df-z 9386  df-uz 9662  df-q 9754  df-rp 9789  df-xneg 9907  df-xadd 9908  df-seqfrec 10606  df-exp 10697  df-cj 11203  df-re 11204  df-im 11205  df-rsqrt 11359  df-abs 11360  df-psmet 14355  df-xmet 14356  df-bl 14358
This theorem is referenced by:  blbas  14955
  Copyright terms: Public domain W3C validator