ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blin2 Unicode version

Theorem blin2 14668
Description: Given any two balls and a point in their intersection, there is a ball contained in the intersection with the given center point. (Contributed by Mario Carneiro, 12-Nov-2013.)
Assertion
Ref Expression
blin2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( B  i^i  C ) )
Distinct variable groups:    x, B    x, C    x, D    x, P    x, X

Proof of Theorem blin2
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 527 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  D  e.  ( *Met `  X ) )
2 simprl 529 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  B  e.  ran  ( ball `  D ) )
3 simplr 528 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  P  e.  ( B  i^i  C ) )
43elin1d 3352 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  P  e.  B )
5 blss 14664 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  B  e.  ran  ( ball `  D )  /\  P  e.  B
)  ->  E. y  e.  RR+  ( P (
ball `  D )
y )  C_  B
)
61, 2, 4, 5syl3anc 1249 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  E. y  e.  RR+  ( P ( ball `  D
) y )  C_  B )
7 simprr 531 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  C  e.  ran  ( ball `  D ) )
83elin2d 3353 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  P  e.  C )
9 blss 14664 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  C  e.  ran  ( ball `  D )  /\  P  e.  C
)  ->  E. z  e.  RR+  ( P (
ball `  D )
z )  C_  C
)
101, 7, 8, 9syl3anc 1249 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  E. z  e.  RR+  ( P ( ball `  D
) z )  C_  C )
11 reeanv 2667 . . 3  |-  ( E. y  e.  RR+  E. z  e.  RR+  ( ( P ( ball `  D
) y )  C_  B  /\  ( P (
ball `  D )
z )  C_  C
)  <->  ( E. y  e.  RR+  ( P (
ball `  D )
y )  C_  B  /\  E. z  e.  RR+  ( P ( ball `  D
) z )  C_  C ) )
12 ss2in 3391 . . . . 5  |-  ( ( ( P ( ball `  D ) y ) 
C_  B  /\  ( P ( ball `  D
) z )  C_  C )  ->  (
( P ( ball `  D ) y )  i^i  ( P (
ball `  D )
z ) )  C_  ( B  i^i  C ) )
13 inss1 3383 . . . . . . . . . . 11  |-  ( B  i^i  C )  C_  B
14 blf 14646 . . . . . . . . . . . . . 14  |-  ( D  e.  ( *Met `  X )  ->  ( ball `  D ) : ( X  X.  RR* )
--> ~P X )
15 frn 5416 . . . . . . . . . . . . . 14  |-  ( (
ball `  D ) : ( X  X.  RR* ) --> ~P X  ->  ran  ( ball `  D
)  C_  ~P X
)
161, 14, 153syl 17 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  ran  ( ball `  D
)  C_  ~P X
)
1716, 2sseldd 3184 . . . . . . . . . . . 12  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  B  e.  ~P X
)
1817elpwid 3616 . . . . . . . . . . 11  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  B  C_  X )
1913, 18sstrid 3194 . . . . . . . . . 10  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  -> 
( B  i^i  C
)  C_  X )
2019, 3sseldd 3184 . . . . . . . . 9  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  P  e.  X )
211, 20jca 306 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  -> 
( D  e.  ( *Met `  X
)  /\  P  e.  X ) )
22 rpxr 9736 . . . . . . . . 9  |-  ( y  e.  RR+  ->  y  e. 
RR* )
23 rpxr 9736 . . . . . . . . 9  |-  ( z  e.  RR+  ->  z  e. 
RR* )
2422, 23anim12i 338 . . . . . . . 8  |-  ( ( y  e.  RR+  /\  z  e.  RR+ )  ->  (
y  e.  RR*  /\  z  e.  RR* ) )
25 blininf 14660 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  (
y  e.  RR*  /\  z  e.  RR* ) )  -> 
( ( P (
ball `  D )
y )  i^i  ( P ( ball `  D
) z ) )  =  ( P (
ball `  D )inf ( { y ,  z } ,  RR* ,  <  ) ) )
2621, 24, 25syl2an 289 . . . . . . 7  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  ( B  i^i  C
) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( ( P ( ball `  D
) y )  i^i  ( P ( ball `  D ) z ) )  =  ( P ( ball `  D
)inf ( { y ,  z } ,  RR* ,  <  ) ) )
2726sseq1d 3212 . . . . . 6  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  ( B  i^i  C
) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( (
( P ( ball `  D ) y )  i^i  ( P (
ball `  D )
z ) )  C_  ( B  i^i  C )  <-> 
( P ( ball `  D )inf ( { y ,  z } ,  RR* ,  <  )
)  C_  ( B  i^i  C ) ) )
28 xrminrpcl 11439 . . . . . . . 8  |-  ( ( y  e.  RR+  /\  z  e.  RR+ )  -> inf ( { y ,  z } ,  RR* ,  <  )  e.  RR+ )
29 oveq2 5930 . . . . . . . . . . 11  |-  ( x  = inf ( { y ,  z } ,  RR* ,  <  )  -> 
( P ( ball `  D ) x )  =  ( P (
ball `  D )inf ( { y ,  z } ,  RR* ,  <  ) ) )
3029sseq1d 3212 . . . . . . . . . 10  |-  ( x  = inf ( { y ,  z } ,  RR* ,  <  )  -> 
( ( P (
ball `  D )
x )  C_  ( B  i^i  C )  <->  ( P
( ball `  D )inf ( { y ,  z } ,  RR* ,  <  ) )  C_  ( B  i^i  C ) ) )
3130rspcev 2868 . . . . . . . . 9  |-  ( (inf ( { y ,  z } ,  RR* ,  <  )  e.  RR+  /\  ( P ( ball `  D )inf ( { y ,  z } ,  RR* ,  <  )
)  C_  ( B  i^i  C ) )  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( B  i^i  C ) )
3231ex 115 . . . . . . . 8  |-  (inf ( { y ,  z } ,  RR* ,  <  )  e.  RR+  ->  ( ( P ( ball `  D
)inf ( { y ,  z } ,  RR* ,  <  ) ) 
C_  ( B  i^i  C )  ->  E. x  e.  RR+  ( P (
ball `  D )
x )  C_  ( B  i^i  C ) ) )
3328, 32syl 14 . . . . . . 7  |-  ( ( y  e.  RR+  /\  z  e.  RR+ )  ->  (
( P ( ball `  D )inf ( { y ,  z } ,  RR* ,  <  )
)  C_  ( B  i^i  C )  ->  E. x  e.  RR+  ( P (
ball `  D )
x )  C_  ( B  i^i  C ) ) )
3433adantl 277 . . . . . 6  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  ( B  i^i  C
) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( ( P ( ball `  D
)inf ( { y ,  z } ,  RR* ,  <  ) ) 
C_  ( B  i^i  C )  ->  E. x  e.  RR+  ( P (
ball `  D )
x )  C_  ( B  i^i  C ) ) )
3527, 34sylbid 150 . . . . 5  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  ( B  i^i  C
) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( (
( P ( ball `  D ) y )  i^i  ( P (
ball `  D )
z ) )  C_  ( B  i^i  C )  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( B  i^i  C ) ) )
3612, 35syl5 32 . . . 4  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  ( B  i^i  C
) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( (
( P ( ball `  D ) y ) 
C_  B  /\  ( P ( ball `  D
) z )  C_  C )  ->  E. x  e.  RR+  ( P (
ball `  D )
x )  C_  ( B  i^i  C ) ) )
3736rexlimdvva 2622 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  -> 
( E. y  e.  RR+  E. z  e.  RR+  ( ( P (
ball `  D )
y )  C_  B  /\  ( P ( ball `  D ) z ) 
C_  C )  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( B  i^i  C ) ) )
3811, 37biimtrrid 153 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  -> 
( ( E. y  e.  RR+  ( P (
ball `  D )
y )  C_  B  /\  E. z  e.  RR+  ( P ( ball `  D
) z )  C_  C )  ->  E. x  e.  RR+  ( P (
ball `  D )
x )  C_  ( B  i^i  C ) ) )
396, 10, 38mp2and 433 1  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( B  i^i  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   E.wrex 2476    i^i cin 3156    C_ wss 3157   ~Pcpw 3605   {cpr 3623    X. cxp 4661   ran crn 4664   -->wf 5254   ` cfv 5258  (class class class)co 5922  infcinf 7049   RR*cxr 8060    < clt 8061   RR+crp 9728   *Metcxmet 14092   ballcbl 14094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-map 6709  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-xneg 9847  df-xadd 9848  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-psmet 14099  df-xmet 14100  df-bl 14102
This theorem is referenced by:  blbas  14669
  Copyright terms: Public domain W3C validator