ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blin2 Unicode version

Theorem blin2 12611
Description: Given any two balls and a point in their intersection, there is a ball contained in the intersection with the given center point. (Contributed by Mario Carneiro, 12-Nov-2013.)
Assertion
Ref Expression
blin2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( B  i^i  C ) )
Distinct variable groups:    x, B    x, C    x, D    x, P    x, X

Proof of Theorem blin2
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 518 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  D  e.  ( *Met `  X ) )
2 simprl 520 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  B  e.  ran  ( ball `  D ) )
3 simplr 519 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  P  e.  ( B  i^i  C ) )
43elin1d 3265 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  P  e.  B )
5 blss 12607 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  B  e.  ran  ( ball `  D )  /\  P  e.  B
)  ->  E. y  e.  RR+  ( P (
ball `  D )
y )  C_  B
)
61, 2, 4, 5syl3anc 1216 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  E. y  e.  RR+  ( P ( ball `  D
) y )  C_  B )
7 simprr 521 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  C  e.  ran  ( ball `  D ) )
83elin2d 3266 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  P  e.  C )
9 blss 12607 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  C  e.  ran  ( ball `  D )  /\  P  e.  C
)  ->  E. z  e.  RR+  ( P (
ball `  D )
z )  C_  C
)
101, 7, 8, 9syl3anc 1216 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  E. z  e.  RR+  ( P ( ball `  D
) z )  C_  C )
11 reeanv 2600 . . 3  |-  ( E. y  e.  RR+  E. z  e.  RR+  ( ( P ( ball `  D
) y )  C_  B  /\  ( P (
ball `  D )
z )  C_  C
)  <->  ( E. y  e.  RR+  ( P (
ball `  D )
y )  C_  B  /\  E. z  e.  RR+  ( P ( ball `  D
) z )  C_  C ) )
12 ss2in 3304 . . . . 5  |-  ( ( ( P ( ball `  D ) y ) 
C_  B  /\  ( P ( ball `  D
) z )  C_  C )  ->  (
( P ( ball `  D ) y )  i^i  ( P (
ball `  D )
z ) )  C_  ( B  i^i  C ) )
13 inss1 3296 . . . . . . . . . . 11  |-  ( B  i^i  C )  C_  B
14 blf 12589 . . . . . . . . . . . . . 14  |-  ( D  e.  ( *Met `  X )  ->  ( ball `  D ) : ( X  X.  RR* )
--> ~P X )
15 frn 5281 . . . . . . . . . . . . . 14  |-  ( (
ball `  D ) : ( X  X.  RR* ) --> ~P X  ->  ran  ( ball `  D
)  C_  ~P X
)
161, 14, 153syl 17 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  ran  ( ball `  D
)  C_  ~P X
)
1716, 2sseldd 3098 . . . . . . . . . . . 12  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  B  e.  ~P X
)
1817elpwid 3521 . . . . . . . . . . 11  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  B  C_  X )
1913, 18sstrid 3108 . . . . . . . . . 10  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  -> 
( B  i^i  C
)  C_  X )
2019, 3sseldd 3098 . . . . . . . . 9  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  P  e.  X )
211, 20jca 304 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  -> 
( D  e.  ( *Met `  X
)  /\  P  e.  X ) )
22 rpxr 9456 . . . . . . . . 9  |-  ( y  e.  RR+  ->  y  e. 
RR* )
23 rpxr 9456 . . . . . . . . 9  |-  ( z  e.  RR+  ->  z  e. 
RR* )
2422, 23anim12i 336 . . . . . . . 8  |-  ( ( y  e.  RR+  /\  z  e.  RR+ )  ->  (
y  e.  RR*  /\  z  e.  RR* ) )
25 blininf 12603 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  (
y  e.  RR*  /\  z  e.  RR* ) )  -> 
( ( P (
ball `  D )
y )  i^i  ( P ( ball `  D
) z ) )  =  ( P (
ball `  D )inf ( { y ,  z } ,  RR* ,  <  ) ) )
2621, 24, 25syl2an 287 . . . . . . 7  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  ( B  i^i  C
) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( ( P ( ball `  D
) y )  i^i  ( P ( ball `  D ) z ) )  =  ( P ( ball `  D
)inf ( { y ,  z } ,  RR* ,  <  ) ) )
2726sseq1d 3126 . . . . . 6  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  ( B  i^i  C
) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( (
( P ( ball `  D ) y )  i^i  ( P (
ball `  D )
z ) )  C_  ( B  i^i  C )  <-> 
( P ( ball `  D )inf ( { y ,  z } ,  RR* ,  <  )
)  C_  ( B  i^i  C ) ) )
28 xrminrpcl 11050 . . . . . . . 8  |-  ( ( y  e.  RR+  /\  z  e.  RR+ )  -> inf ( { y ,  z } ,  RR* ,  <  )  e.  RR+ )
29 oveq2 5782 . . . . . . . . . . 11  |-  ( x  = inf ( { y ,  z } ,  RR* ,  <  )  -> 
( P ( ball `  D ) x )  =  ( P (
ball `  D )inf ( { y ,  z } ,  RR* ,  <  ) ) )
3029sseq1d 3126 . . . . . . . . . 10  |-  ( x  = inf ( { y ,  z } ,  RR* ,  <  )  -> 
( ( P (
ball `  D )
x )  C_  ( B  i^i  C )  <->  ( P
( ball `  D )inf ( { y ,  z } ,  RR* ,  <  ) )  C_  ( B  i^i  C ) ) )
3130rspcev 2789 . . . . . . . . 9  |-  ( (inf ( { y ,  z } ,  RR* ,  <  )  e.  RR+  /\  ( P ( ball `  D )inf ( { y ,  z } ,  RR* ,  <  )
)  C_  ( B  i^i  C ) )  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( B  i^i  C ) )
3231ex 114 . . . . . . . 8  |-  (inf ( { y ,  z } ,  RR* ,  <  )  e.  RR+  ->  ( ( P ( ball `  D
)inf ( { y ,  z } ,  RR* ,  <  ) ) 
C_  ( B  i^i  C )  ->  E. x  e.  RR+  ( P (
ball `  D )
x )  C_  ( B  i^i  C ) ) )
3328, 32syl 14 . . . . . . 7  |-  ( ( y  e.  RR+  /\  z  e.  RR+ )  ->  (
( P ( ball `  D )inf ( { y ,  z } ,  RR* ,  <  )
)  C_  ( B  i^i  C )  ->  E. x  e.  RR+  ( P (
ball `  D )
x )  C_  ( B  i^i  C ) ) )
3433adantl 275 . . . . . 6  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  ( B  i^i  C
) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( ( P ( ball `  D
)inf ( { y ,  z } ,  RR* ,  <  ) ) 
C_  ( B  i^i  C )  ->  E. x  e.  RR+  ( P (
ball `  D )
x )  C_  ( B  i^i  C ) ) )
3527, 34sylbid 149 . . . . 5  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  ( B  i^i  C
) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( (
( P ( ball `  D ) y )  i^i  ( P (
ball `  D )
z ) )  C_  ( B  i^i  C )  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( B  i^i  C ) ) )
3612, 35syl5 32 . . . 4  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  ( B  i^i  C
) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( (
( P ( ball `  D ) y ) 
C_  B  /\  ( P ( ball `  D
) z )  C_  C )  ->  E. x  e.  RR+  ( P (
ball `  D )
x )  C_  ( B  i^i  C ) ) )
3736rexlimdvva 2557 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  -> 
( E. y  e.  RR+  E. z  e.  RR+  ( ( P (
ball `  D )
y )  C_  B  /\  ( P ( ball `  D ) z ) 
C_  C )  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( B  i^i  C ) ) )
3811, 37syl5bir 152 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  -> 
( ( E. y  e.  RR+  ( P (
ball `  D )
y )  C_  B  /\  E. z  e.  RR+  ( P ( ball `  D
) z )  C_  C )  ->  E. x  e.  RR+  ( P (
ball `  D )
x )  C_  ( B  i^i  C ) ) )
396, 10, 38mp2and 429 1  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( B  i^i  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   E.wrex 2417    i^i cin 3070    C_ wss 3071   ~Pcpw 3510   {cpr 3528    X. cxp 4537   ran crn 4540   -->wf 5119   ` cfv 5123  (class class class)co 5774  infcinf 6870   RR*cxr 7806    < clt 7807   RR+crp 9448   *Metcxmet 12159   ballcbl 12161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-mulrcl 7726  ax-addcom 7727  ax-mulcom 7728  ax-addass 7729  ax-mulass 7730  ax-distr 7731  ax-i2m1 7732  ax-0lt1 7733  ax-1rid 7734  ax-0id 7735  ax-rnegex 7736  ax-precex 7737  ax-cnre 7738  ax-pre-ltirr 7739  ax-pre-ltwlin 7740  ax-pre-lttrn 7741  ax-pre-apti 7742  ax-pre-ltadd 7743  ax-pre-mulgt0 7744  ax-pre-mulext 7745  ax-arch 7746  ax-caucvg 7747
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-map 6544  df-sup 6871  df-inf 6872  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813  df-sub 7942  df-neg 7943  df-reap 8344  df-ap 8351  df-div 8440  df-inn 8728  df-2 8786  df-3 8787  df-4 8788  df-n0 8985  df-z 9062  df-uz 9334  df-q 9419  df-rp 9449  df-xneg 9566  df-xadd 9567  df-seqfrec 10226  df-exp 10300  df-cj 10621  df-re 10622  df-im 10623  df-rsqrt 10777  df-abs 10778  df-psmet 12166  df-xmet 12167  df-bl 12169
This theorem is referenced by:  blbas  12612
  Copyright terms: Public domain W3C validator