ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blin2 Unicode version

Theorem blin2 15114
Description: Given any two balls and a point in their intersection, there is a ball contained in the intersection with the given center point. (Contributed by Mario Carneiro, 12-Nov-2013.)
Assertion
Ref Expression
blin2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( B  i^i  C ) )
Distinct variable groups:    x, B    x, C    x, D    x, P    x, X

Proof of Theorem blin2
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 527 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  D  e.  ( *Met `  X ) )
2 simprl 529 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  B  e.  ran  ( ball `  D ) )
3 simplr 528 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  P  e.  ( B  i^i  C ) )
43elin1d 3393 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  P  e.  B )
5 blss 15110 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  B  e.  ran  ( ball `  D )  /\  P  e.  B
)  ->  E. y  e.  RR+  ( P (
ball `  D )
y )  C_  B
)
61, 2, 4, 5syl3anc 1271 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  E. y  e.  RR+  ( P ( ball `  D
) y )  C_  B )
7 simprr 531 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  C  e.  ran  ( ball `  D ) )
83elin2d 3394 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  P  e.  C )
9 blss 15110 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  C  e.  ran  ( ball `  D )  /\  P  e.  C
)  ->  E. z  e.  RR+  ( P (
ball `  D )
z )  C_  C
)
101, 7, 8, 9syl3anc 1271 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  E. z  e.  RR+  ( P ( ball `  D
) z )  C_  C )
11 reeanv 2701 . . 3  |-  ( E. y  e.  RR+  E. z  e.  RR+  ( ( P ( ball `  D
) y )  C_  B  /\  ( P (
ball `  D )
z )  C_  C
)  <->  ( E. y  e.  RR+  ( P (
ball `  D )
y )  C_  B  /\  E. z  e.  RR+  ( P ( ball `  D
) z )  C_  C ) )
12 ss2in 3432 . . . . 5  |-  ( ( ( P ( ball `  D ) y ) 
C_  B  /\  ( P ( ball `  D
) z )  C_  C )  ->  (
( P ( ball `  D ) y )  i^i  ( P (
ball `  D )
z ) )  C_  ( B  i^i  C ) )
13 inss1 3424 . . . . . . . . . . 11  |-  ( B  i^i  C )  C_  B
14 blf 15092 . . . . . . . . . . . . . 14  |-  ( D  e.  ( *Met `  X )  ->  ( ball `  D ) : ( X  X.  RR* )
--> ~P X )
15 frn 5482 . . . . . . . . . . . . . 14  |-  ( (
ball `  D ) : ( X  X.  RR* ) --> ~P X  ->  ran  ( ball `  D
)  C_  ~P X
)
161, 14, 153syl 17 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  ran  ( ball `  D
)  C_  ~P X
)
1716, 2sseldd 3225 . . . . . . . . . . . 12  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  B  e.  ~P X
)
1817elpwid 3660 . . . . . . . . . . 11  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  B  C_  X )
1913, 18sstrid 3235 . . . . . . . . . 10  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  -> 
( B  i^i  C
)  C_  X )
2019, 3sseldd 3225 . . . . . . . . 9  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  P  e.  X )
211, 20jca 306 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  -> 
( D  e.  ( *Met `  X
)  /\  P  e.  X ) )
22 rpxr 9865 . . . . . . . . 9  |-  ( y  e.  RR+  ->  y  e. 
RR* )
23 rpxr 9865 . . . . . . . . 9  |-  ( z  e.  RR+  ->  z  e. 
RR* )
2422, 23anim12i 338 . . . . . . . 8  |-  ( ( y  e.  RR+  /\  z  e.  RR+ )  ->  (
y  e.  RR*  /\  z  e.  RR* ) )
25 blininf 15106 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  (
y  e.  RR*  /\  z  e.  RR* ) )  -> 
( ( P (
ball `  D )
y )  i^i  ( P ( ball `  D
) z ) )  =  ( P (
ball `  D )inf ( { y ,  z } ,  RR* ,  <  ) ) )
2621, 24, 25syl2an 289 . . . . . . 7  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  ( B  i^i  C
) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( ( P ( ball `  D
) y )  i^i  ( P ( ball `  D ) z ) )  =  ( P ( ball `  D
)inf ( { y ,  z } ,  RR* ,  <  ) ) )
2726sseq1d 3253 . . . . . 6  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  ( B  i^i  C
) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( (
( P ( ball `  D ) y )  i^i  ( P (
ball `  D )
z ) )  C_  ( B  i^i  C )  <-> 
( P ( ball `  D )inf ( { y ,  z } ,  RR* ,  <  )
)  C_  ( B  i^i  C ) ) )
28 xrminrpcl 11793 . . . . . . . 8  |-  ( ( y  e.  RR+  /\  z  e.  RR+ )  -> inf ( { y ,  z } ,  RR* ,  <  )  e.  RR+ )
29 oveq2 6015 . . . . . . . . . . 11  |-  ( x  = inf ( { y ,  z } ,  RR* ,  <  )  -> 
( P ( ball `  D ) x )  =  ( P (
ball `  D )inf ( { y ,  z } ,  RR* ,  <  ) ) )
3029sseq1d 3253 . . . . . . . . . 10  |-  ( x  = inf ( { y ,  z } ,  RR* ,  <  )  -> 
( ( P (
ball `  D )
x )  C_  ( B  i^i  C )  <->  ( P
( ball `  D )inf ( { y ,  z } ,  RR* ,  <  ) )  C_  ( B  i^i  C ) ) )
3130rspcev 2907 . . . . . . . . 9  |-  ( (inf ( { y ,  z } ,  RR* ,  <  )  e.  RR+  /\  ( P ( ball `  D )inf ( { y ,  z } ,  RR* ,  <  )
)  C_  ( B  i^i  C ) )  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( B  i^i  C ) )
3231ex 115 . . . . . . . 8  |-  (inf ( { y ,  z } ,  RR* ,  <  )  e.  RR+  ->  ( ( P ( ball `  D
)inf ( { y ,  z } ,  RR* ,  <  ) ) 
C_  ( B  i^i  C )  ->  E. x  e.  RR+  ( P (
ball `  D )
x )  C_  ( B  i^i  C ) ) )
3328, 32syl 14 . . . . . . 7  |-  ( ( y  e.  RR+  /\  z  e.  RR+ )  ->  (
( P ( ball `  D )inf ( { y ,  z } ,  RR* ,  <  )
)  C_  ( B  i^i  C )  ->  E. x  e.  RR+  ( P (
ball `  D )
x )  C_  ( B  i^i  C ) ) )
3433adantl 277 . . . . . 6  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  ( B  i^i  C
) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( ( P ( ball `  D
)inf ( { y ,  z } ,  RR* ,  <  ) ) 
C_  ( B  i^i  C )  ->  E. x  e.  RR+  ( P (
ball `  D )
x )  C_  ( B  i^i  C ) ) )
3527, 34sylbid 150 . . . . 5  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  ( B  i^i  C
) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( (
( P ( ball `  D ) y )  i^i  ( P (
ball `  D )
z ) )  C_  ( B  i^i  C )  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( B  i^i  C ) ) )
3612, 35syl5 32 . . . 4  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  ( B  i^i  C
) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( (
( P ( ball `  D ) y ) 
C_  B  /\  ( P ( ball `  D
) z )  C_  C )  ->  E. x  e.  RR+  ( P (
ball `  D )
x )  C_  ( B  i^i  C ) ) )
3736rexlimdvva 2656 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  -> 
( E. y  e.  RR+  E. z  e.  RR+  ( ( P (
ball `  D )
y )  C_  B  /\  ( P ( ball `  D ) z ) 
C_  C )  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( B  i^i  C ) ) )
3811, 37biimtrrid 153 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  -> 
( ( E. y  e.  RR+  ( P (
ball `  D )
y )  C_  B  /\  E. z  e.  RR+  ( P ( ball `  D
) z )  C_  C )  ->  E. x  e.  RR+  ( P (
ball `  D )
x )  C_  ( B  i^i  C ) ) )
396, 10, 38mp2and 433 1  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( B  i^i  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   E.wrex 2509    i^i cin 3196    C_ wss 3197   ~Pcpw 3649   {cpr 3667    X. cxp 4717   ran crn 4720   -->wf 5314   ` cfv 5318  (class class class)co 6007  infcinf 7158   RR*cxr 8188    < clt 8189   RR+crp 9857   *Metcxmet 14508   ballcbl 14510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-map 6805  df-sup 7159  df-inf 7160  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-n0 9378  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-xneg 9976  df-xadd 9977  df-seqfrec 10678  df-exp 10769  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-psmet 14515  df-xmet 14516  df-bl 14518
This theorem is referenced by:  blbas  15115
  Copyright terms: Public domain W3C validator