ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elin2d GIF version

Theorem elin2d 3353
Description: Elementhood in the first set of an intersection - deduction version. (Contributed by Thierry Arnoux, 3-May-2020.)
Hypothesis
Ref Expression
elin1d.1 (𝜑𝑋 ∈ (𝐴𝐵))
Assertion
Ref Expression
elin2d (𝜑𝑋𝐵)

Proof of Theorem elin2d
StepHypRef Expression
1 elin1d.1 . 2 (𝜑𝑋 ∈ (𝐴𝐵))
2 elinel2 3350 . 2 (𝑋 ∈ (𝐴𝐵) → 𝑋𝐵)
31, 2syl 14 1 (𝜑𝑋𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167  cin 3156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163
This theorem is referenced by:  elfi2  7038  fiuni  7044  fifo  7046  explecnv  11670  nninfdclemp1  12667  idomdomd  13833  sralmod  14006  2idlridld  14063  restbasg  14404  txcnp  14507  blin2  14668  bj-charfun  15453  bj-charfundc  15454
  Copyright terms: Public domain W3C validator