ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elin2d GIF version

Theorem elin2d 3367
Description: Elementhood in the first set of an intersection - deduction version. (Contributed by Thierry Arnoux, 3-May-2020.)
Hypothesis
Ref Expression
elin1d.1 (𝜑𝑋 ∈ (𝐴𝐵))
Assertion
Ref Expression
elin2d (𝜑𝑋𝐵)

Proof of Theorem elin2d
StepHypRef Expression
1 elin1d.1 . 2 (𝜑𝑋 ∈ (𝐴𝐵))
2 elinel2 3364 . 2 (𝑋 ∈ (𝐴𝐵) → 𝑋𝐵)
31, 2syl 14 1 (𝜑𝑋𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2177  cin 3169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-in 3176
This theorem is referenced by:  elfi2  7089  fiuni  7095  fifo  7097  explecnv  11891  bitsinv1  12348  nninfdclemp1  12896  idomdomd  14114  sralmod  14287  2idlridld  14344  restbasg  14715  txcnp  14818  blin2  14979  bj-charfun  15881  bj-charfundc  15882
  Copyright terms: Public domain W3C validator