ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fiuni Unicode version

Theorem fiuni 6977
Description: The union of the finite intersections of a set is simply the union of the set itself. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
fiuni  |-  ( A  e.  V  ->  U. A  =  U. ( fi `  A ) )

Proof of Theorem fiuni
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssfii 6973 . . 3  |-  ( A  e.  V  ->  A  C_  ( fi `  A
) )
21unissd 3834 . 2  |-  ( A  e.  V  ->  U. A  C_ 
U. ( fi `  A ) )
3 eluni 3813 . . . . 5  |-  ( x  e.  U. ( fi
`  A )  <->  E. y
( x  e.  y  /\  y  e.  ( fi `  A ) ) )
43biimpi 120 . . . 4  |-  ( x  e.  U. ( fi
`  A )  ->  E. y ( x  e.  y  /\  y  e.  ( fi `  A
) ) )
54adantl 277 . . 3  |-  ( ( A  e.  V  /\  x  e.  U. ( fi `  A ) )  ->  E. y ( x  e.  y  /\  y  e.  ( fi `  A
) ) )
6 simprr 531 . . . . 5  |-  ( ( ( A  e.  V  /\  x  e.  U. ( fi `  A ) )  /\  ( x  e.  y  /\  y  e.  ( fi `  A
) ) )  -> 
y  e.  ( fi
`  A ) )
7 elfi2 6971 . . . . . 6  |-  ( A  e.  V  ->  (
y  e.  ( fi
`  A )  <->  E. z  e.  ( ( ~P A  i^i  Fin )  \  { (/)
} ) y  = 
|^| z ) )
87ad2antrr 488 . . . . 5  |-  ( ( ( A  e.  V  /\  x  e.  U. ( fi `  A ) )  /\  ( x  e.  y  /\  y  e.  ( fi `  A
) ) )  -> 
( y  e.  ( fi `  A )  <->  E. z  e.  (
( ~P A  i^i  Fin )  \  { (/) } ) y  =  |^| z ) )
96, 8mpbid 147 . . . 4  |-  ( ( ( A  e.  V  /\  x  e.  U. ( fi `  A ) )  /\  ( x  e.  y  /\  y  e.  ( fi `  A
) ) )  ->  E. z  e.  (
( ~P A  i^i  Fin )  \  { (/) } ) y  =  |^| z )
10 simprr 531 . . . . . 6  |-  ( ( ( ( A  e.  V  /\  x  e. 
U. ( fi `  A ) )  /\  ( x  e.  y  /\  y  e.  ( fi `  A ) ) )  /\  ( z  e.  ( ( ~P A  i^i  Fin )  \  { (/) } )  /\  y  =  |^| z ) )  ->  y  =  |^| z )
11 eldifi 3258 . . . . . . . . . 10  |-  ( z  e.  ( ( ~P A  i^i  Fin )  \  { (/) } )  -> 
z  e.  ( ~P A  i^i  Fin )
)
1211elin1d 3325 . . . . . . . . 9  |-  ( z  e.  ( ( ~P A  i^i  Fin )  \  { (/) } )  -> 
z  e.  ~P A
)
1312elpwid 3587 . . . . . . . 8  |-  ( z  e.  ( ( ~P A  i^i  Fin )  \  { (/) } )  -> 
z  C_  A )
1413ad2antrl 490 . . . . . . 7  |-  ( ( ( ( A  e.  V  /\  x  e. 
U. ( fi `  A ) )  /\  ( x  e.  y  /\  y  e.  ( fi `  A ) ) )  /\  ( z  e.  ( ( ~P A  i^i  Fin )  \  { (/) } )  /\  y  =  |^| z ) )  ->  z  C_  A )
15 eldifsni 3722 . . . . . . . . 9  |-  ( z  e.  ( ( ~P A  i^i  Fin )  \  { (/) } )  -> 
z  =/=  (/) )
1611elin2d 3326 . . . . . . . . . 10  |-  ( z  e.  ( ( ~P A  i^i  Fin )  \  { (/) } )  -> 
z  e.  Fin )
17 fin0 6885 . . . . . . . . . 10  |-  ( z  e.  Fin  ->  (
z  =/=  (/)  <->  E. w  w  e.  z )
)
1816, 17syl 14 . . . . . . . . 9  |-  ( z  e.  ( ( ~P A  i^i  Fin )  \  { (/) } )  -> 
( z  =/=  (/)  <->  E. w  w  e.  z )
)
1915, 18mpbid 147 . . . . . . . 8  |-  ( z  e.  ( ( ~P A  i^i  Fin )  \  { (/) } )  ->  E. w  w  e.  z )
2019ad2antrl 490 . . . . . . 7  |-  ( ( ( ( A  e.  V  /\  x  e. 
U. ( fi `  A ) )  /\  ( x  e.  y  /\  y  e.  ( fi `  A ) ) )  /\  ( z  e.  ( ( ~P A  i^i  Fin )  \  { (/) } )  /\  y  =  |^| z ) )  ->  E. w  w  e.  z )
21 intssuni2m 3869 . . . . . . 7  |-  ( ( z  C_  A  /\  E. w  w  e.  z )  ->  |^| z  C_  U. A )
2214, 20, 21syl2anc 411 . . . . . 6  |-  ( ( ( ( A  e.  V  /\  x  e. 
U. ( fi `  A ) )  /\  ( x  e.  y  /\  y  e.  ( fi `  A ) ) )  /\  ( z  e.  ( ( ~P A  i^i  Fin )  \  { (/) } )  /\  y  =  |^| z ) )  ->  |^| z  C_  U. A )
2310, 22eqsstrd 3192 . . . . 5  |-  ( ( ( ( A  e.  V  /\  x  e. 
U. ( fi `  A ) )  /\  ( x  e.  y  /\  y  e.  ( fi `  A ) ) )  /\  ( z  e.  ( ( ~P A  i^i  Fin )  \  { (/) } )  /\  y  =  |^| z ) )  ->  y  C_  U. A )
24 simplrl 535 . . . . 5  |-  ( ( ( ( A  e.  V  /\  x  e. 
U. ( fi `  A ) )  /\  ( x  e.  y  /\  y  e.  ( fi `  A ) ) )  /\  ( z  e.  ( ( ~P A  i^i  Fin )  \  { (/) } )  /\  y  =  |^| z ) )  ->  x  e.  y )
2523, 24sseldd 3157 . . . 4  |-  ( ( ( ( A  e.  V  /\  x  e. 
U. ( fi `  A ) )  /\  ( x  e.  y  /\  y  e.  ( fi `  A ) ) )  /\  ( z  e.  ( ( ~P A  i^i  Fin )  \  { (/) } )  /\  y  =  |^| z ) )  ->  x  e.  U. A )
269, 25rexlimddv 2599 . . 3  |-  ( ( ( A  e.  V  /\  x  e.  U. ( fi `  A ) )  /\  ( x  e.  y  /\  y  e.  ( fi `  A
) ) )  ->  x  e.  U. A )
275, 26exlimddv 1898 . 2  |-  ( ( A  e.  V  /\  x  e.  U. ( fi `  A ) )  ->  x  e.  U. A )
282, 27eqelssd 3175 1  |-  ( A  e.  V  ->  U. A  =  U. ( fi `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353   E.wex 1492    e. wcel 2148    =/= wne 2347   E.wrex 2456    \ cdif 3127    i^i cin 3129    C_ wss 3130   (/)c0 3423   ~Pcpw 3576   {csn 3593   U.cuni 3810   |^|cint 3845   ` cfv 5217   Fincfn 6740   ficfi 6967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-iinf 4588
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-1o 6417  df-er 6535  df-en 6741  df-fin 6743  df-fi 6968
This theorem is referenced by:  fipwssg  6978
  Copyright terms: Public domain W3C validator