| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fiuni | Unicode version | ||
| Description: The union of the finite intersections of a set is simply the union of the set itself. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Mario Carneiro, 24-Nov-2013.) |
| Ref | Expression |
|---|---|
| fiuni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssfii 7049 |
. . 3
| |
| 2 | 1 | unissd 3864 |
. 2
|
| 3 | eluni 3843 |
. . . . 5
| |
| 4 | 3 | biimpi 120 |
. . . 4
|
| 5 | 4 | adantl 277 |
. . 3
|
| 6 | simprr 531 |
. . . . 5
| |
| 7 | elfi2 7047 |
. . . . . 6
| |
| 8 | 7 | ad2antrr 488 |
. . . . 5
|
| 9 | 6, 8 | mpbid 147 |
. . . 4
|
| 10 | simprr 531 |
. . . . . 6
| |
| 11 | eldifi 3286 |
. . . . . . . . . 10
| |
| 12 | 11 | elin1d 3353 |
. . . . . . . . 9
|
| 13 | 12 | elpwid 3617 |
. . . . . . . 8
|
| 14 | 13 | ad2antrl 490 |
. . . . . . 7
|
| 15 | eldifsni 3752 |
. . . . . . . . 9
| |
| 16 | 11 | elin2d 3354 |
. . . . . . . . . 10
|
| 17 | fin0 6955 |
. . . . . . . . . 10
| |
| 18 | 16, 17 | syl 14 |
. . . . . . . . 9
|
| 19 | 15, 18 | mpbid 147 |
. . . . . . . 8
|
| 20 | 19 | ad2antrl 490 |
. . . . . . 7
|
| 21 | intssuni2m 3899 |
. . . . . . 7
| |
| 22 | 14, 20, 21 | syl2anc 411 |
. . . . . 6
|
| 23 | 10, 22 | eqsstrd 3220 |
. . . . 5
|
| 24 | simplrl 535 |
. . . . 5
| |
| 25 | 23, 24 | sseldd 3185 |
. . . 4
|
| 26 | 9, 25 | rexlimddv 2619 |
. . 3
|
| 27 | 5, 26 | exlimddv 1913 |
. 2
|
| 28 | 2, 27 | eqelssd 3203 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-1o 6483 df-er 6601 df-en 6809 df-fin 6811 df-fi 7044 |
| This theorem is referenced by: fipwssg 7054 |
| Copyright terms: Public domain | W3C validator |