ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fiuni Unicode version

Theorem fiuni 6955
Description: The union of the finite intersections of a set is simply the union of the set itself. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
fiuni  |-  ( A  e.  V  ->  U. A  =  U. ( fi `  A ) )

Proof of Theorem fiuni
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssfii 6951 . . 3  |-  ( A  e.  V  ->  A  C_  ( fi `  A
) )
21unissd 3820 . 2  |-  ( A  e.  V  ->  U. A  C_ 
U. ( fi `  A ) )
3 eluni 3799 . . . . 5  |-  ( x  e.  U. ( fi
`  A )  <->  E. y
( x  e.  y  /\  y  e.  ( fi `  A ) ) )
43biimpi 119 . . . 4  |-  ( x  e.  U. ( fi
`  A )  ->  E. y ( x  e.  y  /\  y  e.  ( fi `  A
) ) )
54adantl 275 . . 3  |-  ( ( A  e.  V  /\  x  e.  U. ( fi `  A ) )  ->  E. y ( x  e.  y  /\  y  e.  ( fi `  A
) ) )
6 simprr 527 . . . . 5  |-  ( ( ( A  e.  V  /\  x  e.  U. ( fi `  A ) )  /\  ( x  e.  y  /\  y  e.  ( fi `  A
) ) )  -> 
y  e.  ( fi
`  A ) )
7 elfi2 6949 . . . . . 6  |-  ( A  e.  V  ->  (
y  e.  ( fi
`  A )  <->  E. z  e.  ( ( ~P A  i^i  Fin )  \  { (/)
} ) y  = 
|^| z ) )
87ad2antrr 485 . . . . 5  |-  ( ( ( A  e.  V  /\  x  e.  U. ( fi `  A ) )  /\  ( x  e.  y  /\  y  e.  ( fi `  A
) ) )  -> 
( y  e.  ( fi `  A )  <->  E. z  e.  (
( ~P A  i^i  Fin )  \  { (/) } ) y  =  |^| z ) )
96, 8mpbid 146 . . . 4  |-  ( ( ( A  e.  V  /\  x  e.  U. ( fi `  A ) )  /\  ( x  e.  y  /\  y  e.  ( fi `  A
) ) )  ->  E. z  e.  (
( ~P A  i^i  Fin )  \  { (/) } ) y  =  |^| z )
10 simprr 527 . . . . . 6  |-  ( ( ( ( A  e.  V  /\  x  e. 
U. ( fi `  A ) )  /\  ( x  e.  y  /\  y  e.  ( fi `  A ) ) )  /\  ( z  e.  ( ( ~P A  i^i  Fin )  \  { (/) } )  /\  y  =  |^| z ) )  ->  y  =  |^| z )
11 eldifi 3249 . . . . . . . . . 10  |-  ( z  e.  ( ( ~P A  i^i  Fin )  \  { (/) } )  -> 
z  e.  ( ~P A  i^i  Fin )
)
1211elin1d 3316 . . . . . . . . 9  |-  ( z  e.  ( ( ~P A  i^i  Fin )  \  { (/) } )  -> 
z  e.  ~P A
)
1312elpwid 3577 . . . . . . . 8  |-  ( z  e.  ( ( ~P A  i^i  Fin )  \  { (/) } )  -> 
z  C_  A )
1413ad2antrl 487 . . . . . . 7  |-  ( ( ( ( A  e.  V  /\  x  e. 
U. ( fi `  A ) )  /\  ( x  e.  y  /\  y  e.  ( fi `  A ) ) )  /\  ( z  e.  ( ( ~P A  i^i  Fin )  \  { (/) } )  /\  y  =  |^| z ) )  ->  z  C_  A )
15 eldifsni 3712 . . . . . . . . 9  |-  ( z  e.  ( ( ~P A  i^i  Fin )  \  { (/) } )  -> 
z  =/=  (/) )
1611elin2d 3317 . . . . . . . . . 10  |-  ( z  e.  ( ( ~P A  i^i  Fin )  \  { (/) } )  -> 
z  e.  Fin )
17 fin0 6863 . . . . . . . . . 10  |-  ( z  e.  Fin  ->  (
z  =/=  (/)  <->  E. w  w  e.  z )
)
1816, 17syl 14 . . . . . . . . 9  |-  ( z  e.  ( ( ~P A  i^i  Fin )  \  { (/) } )  -> 
( z  =/=  (/)  <->  E. w  w  e.  z )
)
1915, 18mpbid 146 . . . . . . . 8  |-  ( z  e.  ( ( ~P A  i^i  Fin )  \  { (/) } )  ->  E. w  w  e.  z )
2019ad2antrl 487 . . . . . . 7  |-  ( ( ( ( A  e.  V  /\  x  e. 
U. ( fi `  A ) )  /\  ( x  e.  y  /\  y  e.  ( fi `  A ) ) )  /\  ( z  e.  ( ( ~P A  i^i  Fin )  \  { (/) } )  /\  y  =  |^| z ) )  ->  E. w  w  e.  z )
21 intssuni2m 3855 . . . . . . 7  |-  ( ( z  C_  A  /\  E. w  w  e.  z )  ->  |^| z  C_  U. A )
2214, 20, 21syl2anc 409 . . . . . 6  |-  ( ( ( ( A  e.  V  /\  x  e. 
U. ( fi `  A ) )  /\  ( x  e.  y  /\  y  e.  ( fi `  A ) ) )  /\  ( z  e.  ( ( ~P A  i^i  Fin )  \  { (/) } )  /\  y  =  |^| z ) )  ->  |^| z  C_  U. A )
2310, 22eqsstrd 3183 . . . . 5  |-  ( ( ( ( A  e.  V  /\  x  e. 
U. ( fi `  A ) )  /\  ( x  e.  y  /\  y  e.  ( fi `  A ) ) )  /\  ( z  e.  ( ( ~P A  i^i  Fin )  \  { (/) } )  /\  y  =  |^| z ) )  ->  y  C_  U. A )
24 simplrl 530 . . . . 5  |-  ( ( ( ( A  e.  V  /\  x  e. 
U. ( fi `  A ) )  /\  ( x  e.  y  /\  y  e.  ( fi `  A ) ) )  /\  ( z  e.  ( ( ~P A  i^i  Fin )  \  { (/) } )  /\  y  =  |^| z ) )  ->  x  e.  y )
2523, 24sseldd 3148 . . . 4  |-  ( ( ( ( A  e.  V  /\  x  e. 
U. ( fi `  A ) )  /\  ( x  e.  y  /\  y  e.  ( fi `  A ) ) )  /\  ( z  e.  ( ( ~P A  i^i  Fin )  \  { (/) } )  /\  y  =  |^| z ) )  ->  x  e.  U. A )
269, 25rexlimddv 2592 . . 3  |-  ( ( ( A  e.  V  /\  x  e.  U. ( fi `  A ) )  /\  ( x  e.  y  /\  y  e.  ( fi `  A
) ) )  ->  x  e.  U. A )
275, 26exlimddv 1891 . 2  |-  ( ( A  e.  V  /\  x  e.  U. ( fi `  A ) )  ->  x  e.  U. A )
282, 27eqelssd 3166 1  |-  ( A  e.  V  ->  U. A  =  U. ( fi `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348   E.wex 1485    e. wcel 2141    =/= wne 2340   E.wrex 2449    \ cdif 3118    i^i cin 3120    C_ wss 3121   (/)c0 3414   ~Pcpw 3566   {csn 3583   U.cuni 3796   |^|cint 3831   ` cfv 5198   Fincfn 6718   ficfi 6945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-1o 6395  df-er 6513  df-en 6719  df-fin 6721  df-fi 6946
This theorem is referenced by:  fipwssg  6956
  Copyright terms: Public domain W3C validator