| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fiuni | Unicode version | ||
| Description: The union of the finite intersections of a set is simply the union of the set itself. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Mario Carneiro, 24-Nov-2013.) |
| Ref | Expression |
|---|---|
| fiuni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssfii 7102 |
. . 3
| |
| 2 | 1 | unissd 3888 |
. 2
|
| 3 | eluni 3867 |
. . . . 5
| |
| 4 | 3 | biimpi 120 |
. . . 4
|
| 5 | 4 | adantl 277 |
. . 3
|
| 6 | simprr 531 |
. . . . 5
| |
| 7 | elfi2 7100 |
. . . . . 6
| |
| 8 | 7 | ad2antrr 488 |
. . . . 5
|
| 9 | 6, 8 | mpbid 147 |
. . . 4
|
| 10 | simprr 531 |
. . . . . 6
| |
| 11 | eldifi 3303 |
. . . . . . . . . 10
| |
| 12 | 11 | elin1d 3370 |
. . . . . . . . 9
|
| 13 | 12 | elpwid 3637 |
. . . . . . . 8
|
| 14 | 13 | ad2antrl 490 |
. . . . . . 7
|
| 15 | eldifsni 3773 |
. . . . . . . . 9
| |
| 16 | 11 | elin2d 3371 |
. . . . . . . . . 10
|
| 17 | fin0 7008 |
. . . . . . . . . 10
| |
| 18 | 16, 17 | syl 14 |
. . . . . . . . 9
|
| 19 | 15, 18 | mpbid 147 |
. . . . . . . 8
|
| 20 | 19 | ad2antrl 490 |
. . . . . . 7
|
| 21 | intssuni2m 3923 |
. . . . . . 7
| |
| 22 | 14, 20, 21 | syl2anc 411 |
. . . . . 6
|
| 23 | 10, 22 | eqsstrd 3237 |
. . . . 5
|
| 24 | simplrl 535 |
. . . . 5
| |
| 25 | 23, 24 | sseldd 3202 |
. . . 4
|
| 26 | 9, 25 | rexlimddv 2630 |
. . 3
|
| 27 | 5, 26 | exlimddv 1923 |
. 2
|
| 28 | 2, 27 | eqelssd 3220 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-1o 6525 df-er 6643 df-en 6851 df-fin 6853 df-fi 7097 |
| This theorem is referenced by: fipwssg 7107 |
| Copyright terms: Public domain | W3C validator |