ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdclemp1 Unicode version

Theorem nninfdclemp1 13021
Description: Lemma for nninfdc 13024. Each element of the sequence  F is greater than the previous element. (Contributed by Jim Kingdon, 26-Sep-2024.)
Hypotheses
Ref Expression
nninfdclemf.a  |-  ( ph  ->  A  C_  NN )
nninfdclemf.dc  |-  ( ph  ->  A. x  e.  NN DECID  x  e.  A )
nninfdclemf.nb  |-  ( ph  ->  A. m  e.  NN  E. n  e.  A  m  <  n )
nninfdclemf.j  |-  ( ph  ->  ( J  e.  A  /\  1  <  J ) )
nninfdclemf.f  |-  F  =  seq 1 ( ( y  e.  NN , 
z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>=
`  ( y  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  J ) )
nninfdclemp1.u  |-  ( ph  ->  U  e.  NN )
Assertion
Ref Expression
nninfdclemp1  |-  ( ph  ->  ( F `  U
)  <  ( F `  ( U  +  1 ) ) )
Distinct variable groups:    A, m, n   
y, A, z    x, A    m, F, n    x, F    y, F, z    i, J    y, J, z    U, i    U, m, n    x, U    y, U, z
Allowed substitution hints:    ph( x, y, z, i, m, n)    A( i)    F( i)    J( x, m, n)

Proof of Theorem nninfdclemp1
Dummy variables  a  b  r  p  q  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfdclemf.a . . . 4  |-  ( ph  ->  A  C_  NN )
2 nninfdclemf.dc . . . . . 6  |-  ( ph  ->  A. x  e.  NN DECID  x  e.  A )
3 nninfdclemf.nb . . . . . 6  |-  ( ph  ->  A. m  e.  NN  E. n  e.  A  m  <  n )
4 nninfdclemf.j . . . . . 6  |-  ( ph  ->  ( J  e.  A  /\  1  <  J ) )
5 nninfdclemf.f . . . . . 6  |-  F  =  seq 1 ( ( y  e.  NN , 
z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>=
`  ( y  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  J ) )
61, 2, 3, 4, 5nninfdclemf 13020 . . . . 5  |-  ( ph  ->  F : NN --> A )
7 nninfdclemp1.u . . . . 5  |-  ( ph  ->  U  e.  NN )
86, 7ffvelcdmd 5771 . . . 4  |-  ( ph  ->  ( F `  U
)  e.  A )
91, 8sseldd 3225 . . 3  |-  ( ph  ->  ( F `  U
)  e.  NN )
109nnred 9123 . 2  |-  ( ph  ->  ( F `  U
)  e.  RR )
119nnzd 9568 . . . 4  |-  ( ph  ->  ( F `  U
)  e.  ZZ )
1211peano2zd 9572 . . 3  |-  ( ph  ->  ( ( F `  U )  +  1 )  e.  ZZ )
1312zred 9569 . 2  |-  ( ph  ->  ( ( F `  U )  +  1 )  e.  RR )
147peano2nnd 9125 . . . . 5  |-  ( ph  ->  ( U  +  1 )  e.  NN )
156, 14ffvelcdmd 5771 . . . 4  |-  ( ph  ->  ( F `  ( U  +  1 ) )  e.  A )
161, 15sseldd 3225 . . 3  |-  ( ph  ->  ( F `  ( U  +  1 ) )  e.  NN )
1716nnred 9123 . 2  |-  ( ph  ->  ( F `  ( U  +  1 ) )  e.  RR )
1810ltp1d 9077 . 2  |-  ( ph  ->  ( F `  U
)  <  ( ( F `  U )  +  1 ) )
19 simpr 110 . . . . . . 7  |-  ( (
ph  /\  r  e.  ( A  i^i  ( ZZ>=
`  ( ( F `
 U )  +  1 ) ) ) )  ->  r  e.  ( A  i^i  ( ZZ>=
`  ( ( F `
 U )  +  1 ) ) ) )
2019elin2d 3394 . . . . . 6  |-  ( (
ph  /\  r  e.  ( A  i^i  ( ZZ>=
`  ( ( F `
 U )  +  1 ) ) ) )  ->  r  e.  ( ZZ>= `  ( ( F `  U )  +  1 ) ) )
21 eluzle 9734 . . . . . 6  |-  ( r  e.  ( ZZ>= `  (
( F `  U
)  +  1 ) )  ->  ( ( F `  U )  +  1 )  <_ 
r )
2220, 21syl 14 . . . . 5  |-  ( (
ph  /\  r  e.  ( A  i^i  ( ZZ>=
`  ( ( F `
 U )  +  1 ) ) ) )  ->  ( ( F `  U )  +  1 )  <_ 
r )
2322ralrimiva 2603 . . . 4  |-  ( ph  ->  A. r  e.  ( A  i^i  ( ZZ>= `  ( ( F `  U )  +  1 ) ) ) ( ( F `  U
)  +  1 )  <_  r )
24 inss1 3424 . . . . . . 7  |-  ( A  i^i  ( ZZ>= `  (
( F `  U
)  +  1 ) ) )  C_  A
2524, 1sstrid 3235 . . . . . 6  |-  ( ph  ->  ( A  i^i  ( ZZ>=
`  ( ( F `
 U )  +  1 ) ) ) 
C_  NN )
26 eleq1w 2290 . . . . . . . . . . 11  |-  ( x  =  a  ->  (
x  e.  A  <->  a  e.  A ) )
2726dcbid 843 . . . . . . . . . 10  |-  ( x  =  a  ->  (DECID  x  e.  A  <-> DECID  a  e.  A )
)
282adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  NN )  ->  A. x  e.  NN DECID  x  e.  A )
29 simpr 110 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  NN )  ->  a  e.  NN )
3027, 28, 29rspcdva 2912 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  NN )  -> DECID  a  e.  A
)
3129nnzd 9568 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  NN )  ->  a  e.  ZZ )
32 eluzdc 9805 . . . . . . . . . 10  |-  ( ( ( ( F `  U )  +  1 )  e.  ZZ  /\  a  e.  ZZ )  -> DECID  a  e.  ( ZZ>= `  (
( F `  U
)  +  1 ) ) )
3312, 31, 32syl2an2r 597 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  NN )  -> DECID  a  e.  ( ZZ>=
`  ( ( F `
 U )  +  1 ) ) )
34 dcan2 940 . . . . . . . . 9  |-  (DECID  a  e.  A  ->  (DECID  a  e.  ( ZZ>= `  ( ( F `  U )  +  1 ) )  -> DECID 
( a  e.  A  /\  a  e.  ( ZZ>=
`  ( ( F `
 U )  +  1 ) ) ) ) )
3530, 33, 34sylc 62 . . . . . . . 8  |-  ( (
ph  /\  a  e.  NN )  -> DECID  ( a  e.  A  /\  a  e.  ( ZZ>=
`  ( ( F `
 U )  +  1 ) ) ) )
36 elin 3387 . . . . . . . . 9  |-  ( a  e.  ( A  i^i  ( ZZ>= `  ( ( F `  U )  +  1 ) ) )  <->  ( a  e.  A  /\  a  e.  ( ZZ>= `  ( ( F `  U )  +  1 ) ) ) )
3736dcbii 845 . . . . . . . 8  |-  (DECID  a  e.  ( A  i^i  ( ZZ>=
`  ( ( F `
 U )  +  1 ) ) )  <-> DECID  (
a  e.  A  /\  a  e.  ( ZZ>= `  ( ( F `  U )  +  1 ) ) ) )
3835, 37sylibr 134 . . . . . . 7  |-  ( (
ph  /\  a  e.  NN )  -> DECID  a  e.  ( A  i^i  ( ZZ>= `  (
( F `  U
)  +  1 ) ) ) )
3938ralrimiva 2603 . . . . . 6  |-  ( ph  ->  A. a  e.  NN DECID  a  e.  ( A  i^i  ( ZZ>=
`  ( ( F `
 U )  +  1 ) ) ) )
40 breq1 4086 . . . . . . . . . . 11  |-  ( m  =  ( F `  U )  ->  (
m  <  n  <->  ( F `  U )  <  n
) )
4140rexbidv 2531 . . . . . . . . . 10  |-  ( m  =  ( F `  U )  ->  ( E. n  e.  A  m  <  n  <->  E. n  e.  A  ( F `  U )  <  n
) )
4241, 3, 9rspcdva 2912 . . . . . . . . 9  |-  ( ph  ->  E. n  e.  A  ( F `  U )  <  n )
43 breq2 4087 . . . . . . . . . 10  |-  ( n  =  b  ->  (
( F `  U
)  <  n  <->  ( F `  U )  <  b
) )
4443cbvrexv 2766 . . . . . . . . 9  |-  ( E. n  e.  A  ( F `  U )  <  n  <->  E. b  e.  A  ( F `  U )  <  b
)
4542, 44sylib 122 . . . . . . . 8  |-  ( ph  ->  E. b  e.  A  ( F `  U )  <  b )
46 df-rex 2514 . . . . . . . 8  |-  ( E. b  e.  A  ( F `  U )  <  b  <->  E. b
( b  e.  A  /\  ( F `  U
)  <  b )
)
4745, 46sylib 122 . . . . . . 7  |-  ( ph  ->  E. b ( b  e.  A  /\  ( F `  U )  <  b ) )
48 simprl 529 . . . . . . . . . 10  |-  ( (
ph  /\  ( b  e.  A  /\  ( F `  U )  <  b ) )  -> 
b  e.  A )
4912adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  ( b  e.  A  /\  ( F `  U )  <  b ) )  -> 
( ( F `  U )  +  1 )  e.  ZZ )
501adantr 276 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( b  e.  A  /\  ( F `  U )  <  b ) )  ->  A  C_  NN )
5150, 48sseldd 3225 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( b  e.  A  /\  ( F `  U )  <  b ) )  -> 
b  e.  NN )
5251nnzd 9568 . . . . . . . . . . 11  |-  ( (
ph  /\  ( b  e.  A  /\  ( F `  U )  <  b ) )  -> 
b  e.  ZZ )
53 simprr 531 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( b  e.  A  /\  ( F `  U )  <  b ) )  -> 
( F `  U
)  <  b )
54 nnltp1le 9507 . . . . . . . . . . . . 13  |-  ( ( ( F `  U
)  e.  NN  /\  b  e.  NN )  ->  ( ( F `  U )  <  b  <->  ( ( F `  U
)  +  1 )  <_  b ) )
559, 51, 54syl2an2r 597 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( b  e.  A  /\  ( F `  U )  <  b ) )  -> 
( ( F `  U )  <  b  <->  ( ( F `  U
)  +  1 )  <_  b ) )
5653, 55mpbid 147 . . . . . . . . . . 11  |-  ( (
ph  /\  ( b  e.  A  /\  ( F `  U )  <  b ) )  -> 
( ( F `  U )  +  1 )  <_  b )
57 eluz2 9728 . . . . . . . . . . 11  |-  ( b  e.  ( ZZ>= `  (
( F `  U
)  +  1 ) )  <->  ( ( ( F `  U )  +  1 )  e.  ZZ  /\  b  e.  ZZ  /\  ( ( F `  U )  +  1 )  <_ 
b ) )
5849, 52, 56, 57syl3anbrc 1205 . . . . . . . . . 10  |-  ( (
ph  /\  ( b  e.  A  /\  ( F `  U )  <  b ) )  -> 
b  e.  ( ZZ>= `  ( ( F `  U )  +  1 ) ) )
5948, 58elind 3389 . . . . . . . . 9  |-  ( (
ph  /\  ( b  e.  A  /\  ( F `  U )  <  b ) )  -> 
b  e.  ( A  i^i  ( ZZ>= `  (
( F `  U
)  +  1 ) ) ) )
6059ex 115 . . . . . . . 8  |-  ( ph  ->  ( ( b  e.  A  /\  ( F `
 U )  < 
b )  ->  b  e.  ( A  i^i  ( ZZ>=
`  ( ( F `
 U )  +  1 ) ) ) ) )
6160eximdv 1926 . . . . . . 7  |-  ( ph  ->  ( E. b ( b  e.  A  /\  ( F `  U )  <  b )  ->  E. b  b  e.  ( A  i^i  ( ZZ>=
`  ( ( F `
 U )  +  1 ) ) ) ) )
6247, 61mpd 13 . . . . . 6  |-  ( ph  ->  E. b  b  e.  ( A  i^i  ( ZZ>=
`  ( ( F `
 U )  +  1 ) ) ) )
6325, 39, 62nninfdcex 10457 . . . . 5  |-  ( ph  ->  E. a  e.  RR  ( A. b  e.  ( A  i^i  ( ZZ>= `  ( ( F `  U )  +  1 ) ) )  -.  b  <  a  /\  A. b  e.  RR  (
a  <  b  ->  E. r  e.  ( A  i^i  ( ZZ>= `  (
( F `  U
)  +  1 ) ) ) r  < 
b ) ) )
64 nnssre 9114 . . . . . 6  |-  NN  C_  RR
6525, 64sstrdi 3236 . . . . 5  |-  ( ph  ->  ( A  i^i  ( ZZ>=
`  ( ( F `
 U )  +  1 ) ) ) 
C_  RR )
6663, 65, 13infregelbex 9793 . . . 4  |-  ( ph  ->  ( ( ( F `
 U )  +  1 )  <_ inf ( ( A  i^i  ( ZZ>= `  ( ( F `  U )  +  1 ) ) ) ,  RR ,  <  )  <->  A. r  e.  ( A  i^i  ( ZZ>= `  (
( F `  U
)  +  1 ) ) ) ( ( F `  U )  +  1 )  <_ 
r ) )
6723, 66mpbird 167 . . 3  |-  ( ph  ->  ( ( F `  U )  +  1 )  <_ inf ( ( A  i^i  ( ZZ>= `  (
( F `  U
)  +  1 ) ) ) ,  RR ,  <  ) )
685fveq1i 5628 . . . . 5  |-  ( F `
 ( U  + 
1 ) )  =  (  seq 1 ( ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  J ) ) `  ( U  +  1 ) )
69 nnuz 9758 . . . . . . 7  |-  NN  =  ( ZZ>= `  1 )
707, 69eleqtrdi 2322 . . . . . 6  |-  ( ph  ->  U  e.  ( ZZ>= ` 
1 ) )
71 eqid 2229 . . . . . . . 8  |-  ( i  e.  NN  |->  J )  =  ( i  e.  NN  |->  J )
72 eqidd 2230 . . . . . . . 8  |-  ( i  =  p  ->  J  =  J )
73 elnnuz 9759 . . . . . . . . . 10  |-  ( p  e.  NN  <->  p  e.  ( ZZ>= `  1 )
)
7473biimpri 133 . . . . . . . . 9  |-  ( p  e.  ( ZZ>= `  1
)  ->  p  e.  NN )
7574adantl 277 . . . . . . . 8  |-  ( (
ph  /\  p  e.  ( ZZ>= `  1 )
)  ->  p  e.  NN )
764simpld 112 . . . . . . . . 9  |-  ( ph  ->  J  e.  A )
7776adantr 276 . . . . . . . 8  |-  ( (
ph  /\  p  e.  ( ZZ>= `  1 )
)  ->  J  e.  A )
7871, 72, 75, 77fvmptd3 5728 . . . . . . 7  |-  ( (
ph  /\  p  e.  ( ZZ>= `  1 )
)  ->  ( (
i  e.  NN  |->  J ) `  p )  =  J )
7978, 77eqeltrd 2306 . . . . . 6  |-  ( (
ph  /\  p  e.  ( ZZ>= `  1 )
)  ->  ( (
i  e.  NN  |->  J ) `  p )  e.  A )
801adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( p  e.  A  /\  q  e.  A ) )  ->  A  C_  NN )
812adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( p  e.  A  /\  q  e.  A ) )  ->  A. x  e.  NN DECID  x  e.  A )
823adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( p  e.  A  /\  q  e.  A ) )  ->  A. m  e.  NN  E. n  e.  A  m  <  n )
83 simprl 529 . . . . . . 7  |-  ( (
ph  /\  ( p  e.  A  /\  q  e.  A ) )  ->  p  e.  A )
84 simprr 531 . . . . . . 7  |-  ( (
ph  /\  ( p  e.  A  /\  q  e.  A ) )  -> 
q  e.  A )
8580, 81, 82, 83, 84nninfdclemcl 13019 . . . . . 6  |-  ( (
ph  /\  ( p  e.  A  /\  q  e.  A ) )  -> 
( p ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )
) q )  e.  A )
8670, 79, 85seq3p1 10687 . . . . 5  |-  ( ph  ->  (  seq 1 ( ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  J ) ) `  ( U  +  1 ) )  =  ( (  seq 1 ( ( y  e.  NN , 
z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>=
`  ( y  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  J ) ) `  U ) ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  ) ) ( ( i  e.  NN  |->  J ) `  ( U  +  1 ) ) ) )
8768, 86eqtrid 2274 . . . 4  |-  ( ph  ->  ( F `  ( U  +  1 ) )  =  ( (  seq 1 ( ( y  e.  NN , 
z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>=
`  ( y  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  J ) ) `  U ) ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  ) ) ( ( i  e.  NN  |->  J ) `  ( U  +  1 ) ) ) )
885fveq1i 5628 . . . . . . 7  |-  ( F `
 U )  =  (  seq 1 ( ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  J ) ) `  U
)
8988eqcomi 2233 . . . . . 6  |-  (  seq 1 ( ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )
) ,  ( i  e.  NN  |->  J ) ) `  U )  =  ( F `  U )
9089a1i 9 . . . . 5  |-  ( ph  ->  (  seq 1 ( ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  J ) ) `  U
)  =  ( F `
 U ) )
91 eqidd 2230 . . . . . 6  |-  ( i  =  ( U  + 
1 )  ->  J  =  J )
9271, 91, 14, 76fvmptd3 5728 . . . . 5  |-  ( ph  ->  ( ( i  e.  NN  |->  J ) `  ( U  +  1
) )  =  J )
9390, 92oveq12d 6019 . . . 4  |-  ( ph  ->  ( (  seq 1
( ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  (
y  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  J ) ) `  U ) ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )
) ( ( i  e.  NN  |->  J ) `
 ( U  + 
1 ) ) )  =  ( ( F `
 U ) ( y  e.  NN , 
z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>=
`  ( y  +  1 ) ) ) ,  RR ,  <  ) ) J ) )
941, 76sseldd 3225 . . . . 5  |-  ( ph  ->  J  e.  NN )
95 eleq1w 2290 . . . . . . . . . . . . 13  |-  ( x  =  s  ->  (
x  e.  A  <->  s  e.  A ) )
9695dcbid 843 . . . . . . . . . . . 12  |-  ( x  =  s  ->  (DECID  x  e.  A  <-> DECID  s  e.  A )
)
972adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  s  e.  NN )  ->  A. x  e.  NN DECID  x  e.  A )
98 simpr 110 . . . . . . . . . . . 12  |-  ( (
ph  /\  s  e.  NN )  ->  s  e.  NN )
9996, 97, 98rspcdva 2912 . . . . . . . . . . 11  |-  ( (
ph  /\  s  e.  NN )  -> DECID  s  e.  A
)
10098nnzd 9568 . . . . . . . . . . . 12  |-  ( (
ph  /\  s  e.  NN )  ->  s  e.  ZZ )
101 eluzdc 9805 . . . . . . . . . . . 12  |-  ( ( ( ( F `  U )  +  1 )  e.  ZZ  /\  s  e.  ZZ )  -> DECID  s  e.  ( ZZ>= `  (
( F `  U
)  +  1 ) ) )
10212, 100, 101syl2an2r 597 . . . . . . . . . . 11  |-  ( (
ph  /\  s  e.  NN )  -> DECID  s  e.  ( ZZ>=
`  ( ( F `
 U )  +  1 ) ) )
103 dcan2 940 . . . . . . . . . . 11  |-  (DECID  s  e.  A  ->  (DECID  s  e.  ( ZZ>= `  ( ( F `  U )  +  1 ) )  -> DECID 
( s  e.  A  /\  s  e.  ( ZZ>=
`  ( ( F `
 U )  +  1 ) ) ) ) )
10499, 102, 103sylc 62 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  NN )  -> DECID  ( s  e.  A  /\  s  e.  ( ZZ>=
`  ( ( F `
 U )  +  1 ) ) ) )
105 elin 3387 . . . . . . . . . . 11  |-  ( s  e.  ( A  i^i  ( ZZ>= `  ( ( F `  U )  +  1 ) ) )  <->  ( s  e.  A  /\  s  e.  ( ZZ>= `  ( ( F `  U )  +  1 ) ) ) )
106105dcbii 845 . . . . . . . . . 10  |-  (DECID  s  e.  ( A  i^i  ( ZZ>=
`  ( ( F `
 U )  +  1 ) ) )  <-> DECID  (
s  e.  A  /\  s  e.  ( ZZ>= `  ( ( F `  U )  +  1 ) ) ) )
107104, 106sylibr 134 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  NN )  -> DECID  s  e.  ( A  i^i  ( ZZ>= `  (
( F `  U
)  +  1 ) ) ) )
108107ralrimiva 2603 . . . . . . . 8  |-  ( ph  ->  A. s  e.  NN DECID  s  e.  ( A  i^i  ( ZZ>=
`  ( ( F `
 U )  +  1 ) ) ) )
109 eleq1w 2290 . . . . . . . . . 10  |-  ( s  =  x  ->  (
s  e.  ( A  i^i  ( ZZ>= `  (
( F `  U
)  +  1 ) ) )  <->  x  e.  ( A  i^i  ( ZZ>=
`  ( ( F `
 U )  +  1 ) ) ) ) )
110109dcbid 843 . . . . . . . . 9  |-  ( s  =  x  ->  (DECID  s  e.  ( A  i^i  ( ZZ>=
`  ( ( F `
 U )  +  1 ) ) )  <-> DECID  x  e.  ( A  i^i  ( ZZ>=
`  ( ( F `
 U )  +  1 ) ) ) ) )
111110cbvralv 2765 . . . . . . . 8  |-  ( A. s  e.  NN DECID  s  e.  ( A  i^i  ( ZZ>= `  (
( F `  U
)  +  1 ) ) )  <->  A. x  e.  NN DECID  x  e.  ( A  i^i  ( ZZ>= `  (
( F `  U
)  +  1 ) ) ) )
112108, 111sylib 122 . . . . . . 7  |-  ( ph  ->  A. x  e.  NN DECID  x  e.  ( A  i^i  ( ZZ>=
`  ( ( F `
 U )  +  1 ) ) ) )
113 nnmindc 12555 . . . . . . 7  |-  ( ( ( A  i^i  ( ZZ>=
`  ( ( F `
 U )  +  1 ) ) ) 
C_  NN  /\  A. x  e.  NN DECID  x  e.  ( A  i^i  ( ZZ>= `  (
( F `  U
)  +  1 ) ) )  /\  E. b  b  e.  ( A  i^i  ( ZZ>= `  (
( F `  U
)  +  1 ) ) ) )  -> inf ( ( A  i^i  ( ZZ>= `  ( ( F `  U )  +  1 ) ) ) ,  RR ,  <  )  e.  ( A  i^i  ( ZZ>= `  (
( F `  U
)  +  1 ) ) ) )
11425, 112, 62, 113syl3anc 1271 . . . . . 6  |-  ( ph  -> inf ( ( A  i^i  ( ZZ>= `  ( ( F `  U )  +  1 ) ) ) ,  RR ,  <  )  e.  ( A  i^i  ( ZZ>= `  (
( F `  U
)  +  1 ) ) ) )
115114elin1d 3393 . . . . 5  |-  ( ph  -> inf ( ( A  i^i  ( ZZ>= `  ( ( F `  U )  +  1 ) ) ) ,  RR ,  <  )  e.  A )
116 fvoveq1 6024 . . . . . . . 8  |-  ( y  =  ( F `  U )  ->  ( ZZ>=
`  ( y  +  1 ) )  =  ( ZZ>= `  ( ( F `  U )  +  1 ) ) )
117116ineq2d 3405 . . . . . . 7  |-  ( y  =  ( F `  U )  ->  ( A  i^i  ( ZZ>= `  (
y  +  1 ) ) )  =  ( A  i^i  ( ZZ>= `  ( ( F `  U )  +  1 ) ) ) )
118117infeq1d 7179 . . . . . 6  |-  ( y  =  ( F `  U )  -> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )  = inf ( ( A  i^i  ( ZZ>= `  ( ( F `  U )  +  1 ) ) ) ,  RR ,  <  ) )
119 eqidd 2230 . . . . . 6  |-  ( z  =  J  -> inf ( ( A  i^i  ( ZZ>= `  ( ( F `  U )  +  1 ) ) ) ,  RR ,  <  )  = inf ( ( A  i^i  ( ZZ>= `  ( ( F `  U )  +  1 ) ) ) ,  RR ,  <  ) )
120 eqid 2229 . . . . . 6  |-  ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )
)  =  ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )
)
121118, 119, 120ovmpog 6139 . . . . 5  |-  ( ( ( F `  U
)  e.  NN  /\  J  e.  NN  /\ inf (
( A  i^i  ( ZZ>=
`  ( ( F `
 U )  +  1 ) ) ) ,  RR ,  <  )  e.  A )  -> 
( ( F `  U ) ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )
) J )  = inf ( ( A  i^i  ( ZZ>= `  ( ( F `  U )  +  1 ) ) ) ,  RR ,  <  ) )
1229, 94, 115, 121syl3anc 1271 . . . 4  |-  ( ph  ->  ( ( F `  U ) ( y  e.  NN ,  z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>= `  ( y  +  1 ) ) ) ,  RR ,  <  )
) J )  = inf ( ( A  i^i  ( ZZ>= `  ( ( F `  U )  +  1 ) ) ) ,  RR ,  <  ) )
12387, 93, 1223eqtrd 2266 . . 3  |-  ( ph  ->  ( F `  ( U  +  1 ) )  = inf ( ( A  i^i  ( ZZ>= `  ( ( F `  U )  +  1 ) ) ) ,  RR ,  <  )
)
12467, 123breqtrrd 4111 . 2  |-  ( ph  ->  ( ( F `  U )  +  1 )  <_  ( F `  ( U  +  1 ) ) )
12510, 13, 17, 18, 124ltletrd 8570 1  |-  ( ph  ->  ( F `  U
)  <  ( F `  ( U  +  1 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 839    = wceq 1395   E.wex 1538    e. wcel 2200   A.wral 2508   E.wrex 2509    i^i cin 3196    C_ wss 3197   class class class wbr 4083    |-> cmpt 4145   ` cfv 5318  (class class class)co 6001    e. cmpo 6003  infcinf 7150   RRcr 7998   1c1 8000    + caddc 8002    < clt 8181    <_ cle 8182   NNcn 9110   ZZcz 9446   ZZ>=cuz 9722    seqcseq 10669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-sup 7151  df-inf 7152  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723  df-fz 10205  df-fzo 10339  df-seqfrec 10670
This theorem is referenced by:  nninfdclemlt  13022
  Copyright terms: Public domain W3C validator