ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  explecnv Unicode version

Theorem explecnv 10895
Description: A sequence of terms converges to zero when it is less than powers of a number  A whose absolute value is smaller than 1. (Contributed by NM, 19-Jul-2008.) (Revised by Mario Carneiro, 26-Apr-2014.)
Hypotheses
Ref Expression
explecnv.1  |-  Z  =  ( ZZ>= `  M )
explecnv.2  |-  ( ph  ->  F  e.  V )
explecnv.3  |-  ( ph  ->  M  e.  ZZ )
explecnv.5  |-  ( ph  ->  A  e.  RR )
explecnv.4  |-  ( ph  ->  ( abs `  A
)  <  1 )
explecnv.6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
explecnv.7  |-  ( (
ph  /\  k  e.  Z )  ->  ( abs `  ( F `  k ) )  <_ 
( A ^ k
) )
Assertion
Ref Expression
explecnv  |-  ( ph  ->  F  ~~>  0 )
Distinct variable groups:    A, k    ph, k    k, F    k, Z    k, M
Allowed substitution hint:    V( k)

Proof of Theorem explecnv
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 eqid 2088 . . 3  |-  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M
) )  =  (
ZZ>= `  if ( M  <_  0 ,  0 ,  M ) )
2 0z 8759 . . . 4  |-  0  e.  ZZ
3 explecnv.3 . . . 4  |-  ( ph  ->  M  e.  ZZ )
4 0zd 8760 . . . . 5  |-  ( ( 0  e.  ZZ  /\  M  e.  ZZ )  ->  0  e.  ZZ )
5 simpr 108 . . . . 5  |-  ( ( 0  e.  ZZ  /\  M  e.  ZZ )  ->  M  e.  ZZ )
6 zdcle 8821 . . . . . 6  |-  ( ( M  e.  ZZ  /\  0  e.  ZZ )  -> DECID  M  <_  0 )
76ancoms 264 . . . . 5  |-  ( ( 0  e.  ZZ  /\  M  e.  ZZ )  -> DECID  M  <_  0 )
84, 5, 7ifcldcd 3426 . . . 4  |-  ( ( 0  e.  ZZ  /\  M  e.  ZZ )  ->  if ( M  <_ 
0 ,  0 ,  M )  e.  ZZ )
92, 3, 8sylancr 405 . . 3  |-  ( ph  ->  if ( M  <_ 
0 ,  0 ,  M )  e.  ZZ )
10 explecnv.5 . . . . 5  |-  ( ph  ->  A  e.  RR )
1110recnd 7514 . . . 4  |-  ( ph  ->  A  e.  CC )
12 explecnv.4 . . . 4  |-  ( ph  ->  ( abs `  A
)  <  1 )
1311, 12expcnv 10894 . . 3  |-  ( ph  ->  ( n  e.  NN0  |->  ( A ^ n ) )  ~~>  0 )
14 zex 8757 . . . . . 6  |-  ZZ  e.  _V
15 explecnv.1 . . . . . . 7  |-  Z  =  ( ZZ>= `  M )
16 uzssz 9036 . . . . . . 7  |-  ( ZZ>= `  M )  C_  ZZ
1715, 16eqsstri 3056 . . . . . 6  |-  Z  C_  ZZ
1814, 17ssexi 3977 . . . . 5  |-  Z  e. 
_V
1918mptex 5523 . . . 4  |-  ( n  e.  Z  |->  ( abs `  ( F `  n
) ) )  e. 
_V
2019a1i 9 . . 3  |-  ( ph  ->  ( n  e.  Z  |->  ( abs `  ( F `  n )
) )  e.  _V )
21 nn0uz 9051 . . . . . . . . . 10  |-  NN0  =  ( ZZ>= `  0 )
2215, 21ineq12i 3199 . . . . . . . . 9  |-  ( Z  i^i  NN0 )  =  ( ( ZZ>= `  M )  i^i  ( ZZ>= `  0 )
)
23 uzin 9049 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  0  e.  ZZ )  ->  ( ( ZZ>= `  M
)  i^i  ( ZZ>= ` 
0 ) )  =  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )
243, 2, 23sylancl 404 . . . . . . . . 9  |-  ( ph  ->  ( ( ZZ>= `  M
)  i^i  ( ZZ>= ` 
0 ) )  =  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )
2522, 24syl5req 2133 . . . . . . . 8  |-  ( ph  ->  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) )  =  ( Z  i^i  NN0 ) )
2625eleq2d 2157 . . . . . . 7  |-  ( ph  ->  ( k  e.  (
ZZ>= `  if ( M  <_  0 ,  0 ,  M ) )  <-> 
k  e.  ( Z  i^i  NN0 ) ) )
2726biimpa 290 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  k  e.  ( Z  i^i  NN0 )
)
2827elin2d 3190 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  k  e.  NN0 )
2911adantr 270 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  A  e.  CC )
3029, 28expcld 10082 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  ( A ^ k )  e.  CC )
31 oveq2 5660 . . . . . 6  |-  ( n  =  k  ->  ( A ^ n )  =  ( A ^ k
) )
32 eqid 2088 . . . . . 6  |-  ( n  e.  NN0  |->  ( A ^ n ) )  =  ( n  e. 
NN0  |->  ( A ^
n ) )
3331, 32fvmptg 5380 . . . . 5  |-  ( ( k  e.  NN0  /\  ( A ^ k )  e.  CC )  -> 
( ( n  e. 
NN0  |->  ( A ^
n ) ) `  k )  =  ( A ^ k ) )
3428, 30, 33syl2anc 403 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  ( (
n  e.  NN0  |->  ( A ^ n ) ) `
 k )  =  ( A ^ k
) )
3510adantr 270 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  A  e.  RR )
3635, 28reexpcld 10099 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  ( A ^ k )  e.  RR )
3734, 36eqeltrd 2164 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  ( (
n  e.  NN0  |->  ( A ^ n ) ) `
 k )  e.  RR )
3827elin1d 3189 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  k  e.  Z )
39 explecnv.6 . . . . . . 7  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
4038, 39syldan 276 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  ( F `  k )  e.  CC )
4140abscld 10610 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  ( abs `  ( F `  k
) )  e.  RR )
42 2fveq3 5310 . . . . . 6  |-  ( n  =  k  ->  ( abs `  ( F `  n ) )  =  ( abs `  ( F `  k )
) )
43 eqid 2088 . . . . . 6  |-  ( n  e.  Z  |->  ( abs `  ( F `  n
) ) )  =  ( n  e.  Z  |->  ( abs `  ( F `  n )
) )
4442, 43fvmptg 5380 . . . . 5  |-  ( ( k  e.  Z  /\  ( abs `  ( F `
 k ) )  e.  RR )  -> 
( ( n  e.  Z  |->  ( abs `  ( F `  n )
) ) `  k
)  =  ( abs `  ( F `  k
) ) )
4538, 41, 44syl2anc 403 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  ( (
n  e.  Z  |->  ( abs `  ( F `
 n ) ) ) `  k )  =  ( abs `  ( F `  k )
) )
4645, 41eqeltrd 2164 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  ( (
n  e.  Z  |->  ( abs `  ( F `
 n ) ) ) `  k )  e.  RR )
47 explecnv.7 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  ( abs `  ( F `  k ) )  <_ 
( A ^ k
) )
4838, 47syldan 276 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  ( abs `  ( F `  k
) )  <_  ( A ^ k ) )
4948, 45, 343brtr4d 3875 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  ( (
n  e.  Z  |->  ( abs `  ( F `
 n ) ) ) `  k )  <_  ( ( n  e.  NN0  |->  ( A ^ n ) ) `
 k ) )
5040absge0d 10613 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  0  <_  ( abs `  ( F `
 k ) ) )
5150, 45breqtrrd 3871 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  0  <_  ( ( n  e.  Z  |->  ( abs `  ( F `  n )
) ) `  k
) )
521, 9, 13, 20, 37, 46, 49, 51climsqz2 10720 . 2  |-  ( ph  ->  ( n  e.  Z  |->  ( abs `  ( F `  n )
) )  ~~>  0 )
53 explecnv.2 . . 3  |-  ( ph  ->  F  e.  V )
54 simpr 108 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  k  e.  Z )
5539abscld 10610 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( abs `  ( F `  k ) )  e.  RR )
5654, 55, 44syl2anc 403 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  (
( n  e.  Z  |->  ( abs `  ( F `  n )
) ) `  k
)  =  ( abs `  ( F `  k
) ) )
5715, 3, 53, 20, 39, 56climabs0 10692 . 2  |-  ( ph  ->  ( F  ~~>  0  <->  (
n  e.  Z  |->  ( abs `  ( F `
 n ) ) )  ~~>  0 ) )
5852, 57mpbird 165 1  |-  ( ph  ->  F  ~~>  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102  DECID wdc 780    = wceq 1289    e. wcel 1438   _Vcvv 2619    i^i cin 2998   ifcif 3393   class class class wbr 3845    |-> cmpt 3899   ` cfv 5015  (class class class)co 5652   CCcc 7346   RRcr 7347   0cc0 7348   1c1 7349    < clt 7520    <_ cle 7521   NN0cn0 8671   ZZcz 8748   ZZ>=cuz 9017   ^cexp 9950   abscabs 10426    ~~> cli 10662
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3954  ax-sep 3957  ax-nul 3965  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-iinf 4403  ax-cnex 7434  ax-resscn 7435  ax-1cn 7436  ax-1re 7437  ax-icn 7438  ax-addcl 7439  ax-addrcl 7440  ax-mulcl 7441  ax-mulrcl 7442  ax-addcom 7443  ax-mulcom 7444  ax-addass 7445  ax-mulass 7446  ax-distr 7447  ax-i2m1 7448  ax-0lt1 7449  ax-1rid 7450  ax-0id 7451  ax-rnegex 7452  ax-precex 7453  ax-cnre 7454  ax-pre-ltirr 7455  ax-pre-ltwlin 7456  ax-pre-lttrn 7457  ax-pre-apti 7458  ax-pre-ltadd 7459  ax-pre-mulgt0 7460  ax-pre-mulext 7461  ax-arch 7462  ax-caucvg 7463
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-if 3394  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-tr 3937  df-id 4120  df-po 4123  df-iso 4124  df-iord 4193  df-on 4195  df-ilim 4196  df-suc 4198  df-iom 4406  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-1st 5911  df-2nd 5912  df-recs 6070  df-frec 6156  df-pnf 7522  df-mnf 7523  df-xr 7524  df-ltxr 7525  df-le 7526  df-sub 7653  df-neg 7654  df-reap 8050  df-ap 8057  df-div 8138  df-inn 8421  df-2 8479  df-3 8480  df-4 8481  df-n0 8672  df-z 8749  df-uz 9018  df-q 9103  df-rp 9133  df-iseq 9849  df-seq3 9850  df-exp 9951  df-cj 10272  df-re 10273  df-im 10274  df-rsqrt 10427  df-abs 10428  df-clim 10663
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator