ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  explecnv Unicode version

Theorem explecnv 11468
Description: A sequence of terms converges to zero when it is less than powers of a number  A whose absolute value is smaller than 1. (Contributed by NM, 19-Jul-2008.) (Revised by Mario Carneiro, 26-Apr-2014.)
Hypotheses
Ref Expression
explecnv.1  |-  Z  =  ( ZZ>= `  M )
explecnv.2  |-  ( ph  ->  F  e.  V )
explecnv.3  |-  ( ph  ->  M  e.  ZZ )
explecnv.5  |-  ( ph  ->  A  e.  RR )
explecnv.4  |-  ( ph  ->  ( abs `  A
)  <  1 )
explecnv.6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
explecnv.7  |-  ( (
ph  /\  k  e.  Z )  ->  ( abs `  ( F `  k ) )  <_ 
( A ^ k
) )
Assertion
Ref Expression
explecnv  |-  ( ph  ->  F  ~~>  0 )
Distinct variable groups:    A, k    ph, k    k, F    k, Z    k, M
Allowed substitution hint:    V( k)

Proof of Theorem explecnv
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 eqid 2170 . . 3  |-  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M
) )  =  (
ZZ>= `  if ( M  <_  0 ,  0 ,  M ) )
2 0z 9223 . . . 4  |-  0  e.  ZZ
3 explecnv.3 . . . 4  |-  ( ph  ->  M  e.  ZZ )
4 0zd 9224 . . . . 5  |-  ( ( 0  e.  ZZ  /\  M  e.  ZZ )  ->  0  e.  ZZ )
5 simpr 109 . . . . 5  |-  ( ( 0  e.  ZZ  /\  M  e.  ZZ )  ->  M  e.  ZZ )
6 zdcle 9288 . . . . . 6  |-  ( ( M  e.  ZZ  /\  0  e.  ZZ )  -> DECID  M  <_  0 )
76ancoms 266 . . . . 5  |-  ( ( 0  e.  ZZ  /\  M  e.  ZZ )  -> DECID  M  <_  0 )
84, 5, 7ifcldcd 3561 . . . 4  |-  ( ( 0  e.  ZZ  /\  M  e.  ZZ )  ->  if ( M  <_ 
0 ,  0 ,  M )  e.  ZZ )
92, 3, 8sylancr 412 . . 3  |-  ( ph  ->  if ( M  <_ 
0 ,  0 ,  M )  e.  ZZ )
10 explecnv.5 . . . . 5  |-  ( ph  ->  A  e.  RR )
1110recnd 7948 . . . 4  |-  ( ph  ->  A  e.  CC )
12 explecnv.4 . . . 4  |-  ( ph  ->  ( abs `  A
)  <  1 )
1311, 12expcnv 11467 . . 3  |-  ( ph  ->  ( n  e.  NN0  |->  ( A ^ n ) )  ~~>  0 )
14 zex 9221 . . . . . 6  |-  ZZ  e.  _V
15 explecnv.1 . . . . . . 7  |-  Z  =  ( ZZ>= `  M )
16 uzssz 9506 . . . . . . 7  |-  ( ZZ>= `  M )  C_  ZZ
1715, 16eqsstri 3179 . . . . . 6  |-  Z  C_  ZZ
1814, 17ssexi 4127 . . . . 5  |-  Z  e. 
_V
1918mptex 5722 . . . 4  |-  ( n  e.  Z  |->  ( abs `  ( F `  n
) ) )  e. 
_V
2019a1i 9 . . 3  |-  ( ph  ->  ( n  e.  Z  |->  ( abs `  ( F `  n )
) )  e.  _V )
21 nn0uz 9521 . . . . . . . . . 10  |-  NN0  =  ( ZZ>= `  0 )
2215, 21ineq12i 3326 . . . . . . . . 9  |-  ( Z  i^i  NN0 )  =  ( ( ZZ>= `  M )  i^i  ( ZZ>= `  0 )
)
23 uzin 9519 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  0  e.  ZZ )  ->  ( ( ZZ>= `  M
)  i^i  ( ZZ>= ` 
0 ) )  =  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )
243, 2, 23sylancl 411 . . . . . . . . 9  |-  ( ph  ->  ( ( ZZ>= `  M
)  i^i  ( ZZ>= ` 
0 ) )  =  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )
2522, 24eqtr2id 2216 . . . . . . . 8  |-  ( ph  ->  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) )  =  ( Z  i^i  NN0 ) )
2625eleq2d 2240 . . . . . . 7  |-  ( ph  ->  ( k  e.  (
ZZ>= `  if ( M  <_  0 ,  0 ,  M ) )  <-> 
k  e.  ( Z  i^i  NN0 ) ) )
2726biimpa 294 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  k  e.  ( Z  i^i  NN0 )
)
2827elin2d 3317 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  k  e.  NN0 )
2911adantr 274 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  A  e.  CC )
3029, 28expcld 10609 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  ( A ^ k )  e.  CC )
31 oveq2 5861 . . . . . 6  |-  ( n  =  k  ->  ( A ^ n )  =  ( A ^ k
) )
32 eqid 2170 . . . . . 6  |-  ( n  e.  NN0  |->  ( A ^ n ) )  =  ( n  e. 
NN0  |->  ( A ^
n ) )
3331, 32fvmptg 5572 . . . . 5  |-  ( ( k  e.  NN0  /\  ( A ^ k )  e.  CC )  -> 
( ( n  e. 
NN0  |->  ( A ^
n ) ) `  k )  =  ( A ^ k ) )
3428, 30, 33syl2anc 409 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  ( (
n  e.  NN0  |->  ( A ^ n ) ) `
 k )  =  ( A ^ k
) )
3510adantr 274 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  A  e.  RR )
3635, 28reexpcld 10626 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  ( A ^ k )  e.  RR )
3734, 36eqeltrd 2247 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  ( (
n  e.  NN0  |->  ( A ^ n ) ) `
 k )  e.  RR )
3827elin1d 3316 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  k  e.  Z )
39 explecnv.6 . . . . . . 7  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
4038, 39syldan 280 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  ( F `  k )  e.  CC )
4140abscld 11145 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  ( abs `  ( F `  k
) )  e.  RR )
42 2fveq3 5501 . . . . . 6  |-  ( n  =  k  ->  ( abs `  ( F `  n ) )  =  ( abs `  ( F `  k )
) )
43 eqid 2170 . . . . . 6  |-  ( n  e.  Z  |->  ( abs `  ( F `  n
) ) )  =  ( n  e.  Z  |->  ( abs `  ( F `  n )
) )
4442, 43fvmptg 5572 . . . . 5  |-  ( ( k  e.  Z  /\  ( abs `  ( F `
 k ) )  e.  RR )  -> 
( ( n  e.  Z  |->  ( abs `  ( F `  n )
) ) `  k
)  =  ( abs `  ( F `  k
) ) )
4538, 41, 44syl2anc 409 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  ( (
n  e.  Z  |->  ( abs `  ( F `
 n ) ) ) `  k )  =  ( abs `  ( F `  k )
) )
4645, 41eqeltrd 2247 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  ( (
n  e.  Z  |->  ( abs `  ( F `
 n ) ) ) `  k )  e.  RR )
47 explecnv.7 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  ( abs `  ( F `  k ) )  <_ 
( A ^ k
) )
4838, 47syldan 280 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  ( abs `  ( F `  k
) )  <_  ( A ^ k ) )
4948, 45, 343brtr4d 4021 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  ( (
n  e.  Z  |->  ( abs `  ( F `
 n ) ) ) `  k )  <_  ( ( n  e.  NN0  |->  ( A ^ n ) ) `
 k ) )
5040absge0d 11148 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  0  <_  ( abs `  ( F `
 k ) ) )
5150, 45breqtrrd 4017 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  0  <_  ( ( n  e.  Z  |->  ( abs `  ( F `  n )
) ) `  k
) )
521, 9, 13, 20, 37, 46, 49, 51climsqz2 11299 . 2  |-  ( ph  ->  ( n  e.  Z  |->  ( abs `  ( F `  n )
) )  ~~>  0 )
53 explecnv.2 . . 3  |-  ( ph  ->  F  e.  V )
54 simpr 109 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  k  e.  Z )
5539abscld 11145 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( abs `  ( F `  k ) )  e.  RR )
5654, 55, 44syl2anc 409 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  (
( n  e.  Z  |->  ( abs `  ( F `  n )
) ) `  k
)  =  ( abs `  ( F `  k
) ) )
5715, 3, 53, 20, 39, 56climabs0 11270 . 2  |-  ( ph  ->  ( F  ~~>  0  <->  (
n  e.  Z  |->  ( abs `  ( F `
 n ) ) )  ~~>  0 ) )
5852, 57mpbird 166 1  |-  ( ph  ->  F  ~~>  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103  DECID wdc 829    = wceq 1348    e. wcel 2141   _Vcvv 2730    i^i cin 3120   ifcif 3526   class class class wbr 3989    |-> cmpt 4050   ` cfv 5198  (class class class)co 5853   CCcc 7772   RRcr 7773   0cc0 7774   1c1 7775    < clt 7954    <_ cle 7955   NN0cn0 9135   ZZcz 9212   ZZ>=cuz 9487   ^cexp 10475   abscabs 10961    ~~> cli 11241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator