ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  explecnv Unicode version

Theorem explecnv 11931
Description: A sequence of terms converges to zero when it is less than powers of a number  A whose absolute value is smaller than 1. (Contributed by NM, 19-Jul-2008.) (Revised by Mario Carneiro, 26-Apr-2014.)
Hypotheses
Ref Expression
explecnv.1  |-  Z  =  ( ZZ>= `  M )
explecnv.2  |-  ( ph  ->  F  e.  V )
explecnv.3  |-  ( ph  ->  M  e.  ZZ )
explecnv.5  |-  ( ph  ->  A  e.  RR )
explecnv.4  |-  ( ph  ->  ( abs `  A
)  <  1 )
explecnv.6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
explecnv.7  |-  ( (
ph  /\  k  e.  Z )  ->  ( abs `  ( F `  k ) )  <_ 
( A ^ k
) )
Assertion
Ref Expression
explecnv  |-  ( ph  ->  F  ~~>  0 )
Distinct variable groups:    A, k    ph, k    k, F    k, Z    k, M
Allowed substitution hint:    V( k)

Proof of Theorem explecnv
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 eqid 2207 . . 3  |-  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M
) )  =  (
ZZ>= `  if ( M  <_  0 ,  0 ,  M ) )
2 0z 9418 . . . 4  |-  0  e.  ZZ
3 explecnv.3 . . . 4  |-  ( ph  ->  M  e.  ZZ )
4 0zd 9419 . . . . 5  |-  ( ( 0  e.  ZZ  /\  M  e.  ZZ )  ->  0  e.  ZZ )
5 simpr 110 . . . . 5  |-  ( ( 0  e.  ZZ  /\  M  e.  ZZ )  ->  M  e.  ZZ )
6 zdcle 9484 . . . . . 6  |-  ( ( M  e.  ZZ  /\  0  e.  ZZ )  -> DECID  M  <_  0 )
76ancoms 268 . . . . 5  |-  ( ( 0  e.  ZZ  /\  M  e.  ZZ )  -> DECID  M  <_  0 )
84, 5, 7ifcldcd 3617 . . . 4  |-  ( ( 0  e.  ZZ  /\  M  e.  ZZ )  ->  if ( M  <_ 
0 ,  0 ,  M )  e.  ZZ )
92, 3, 8sylancr 414 . . 3  |-  ( ph  ->  if ( M  <_ 
0 ,  0 ,  M )  e.  ZZ )
10 explecnv.5 . . . . 5  |-  ( ph  ->  A  e.  RR )
1110recnd 8136 . . . 4  |-  ( ph  ->  A  e.  CC )
12 explecnv.4 . . . 4  |-  ( ph  ->  ( abs `  A
)  <  1 )
1311, 12expcnv 11930 . . 3  |-  ( ph  ->  ( n  e.  NN0  |->  ( A ^ n ) )  ~~>  0 )
14 zex 9416 . . . . . 6  |-  ZZ  e.  _V
15 explecnv.1 . . . . . . 7  |-  Z  =  ( ZZ>= `  M )
16 uzssz 9703 . . . . . . 7  |-  ( ZZ>= `  M )  C_  ZZ
1715, 16eqsstri 3233 . . . . . 6  |-  Z  C_  ZZ
1814, 17ssexi 4198 . . . . 5  |-  Z  e. 
_V
1918mptex 5833 . . . 4  |-  ( n  e.  Z  |->  ( abs `  ( F `  n
) ) )  e. 
_V
2019a1i 9 . . 3  |-  ( ph  ->  ( n  e.  Z  |->  ( abs `  ( F `  n )
) )  e.  _V )
21 nn0uz 9718 . . . . . . . . . 10  |-  NN0  =  ( ZZ>= `  0 )
2215, 21ineq12i 3380 . . . . . . . . 9  |-  ( Z  i^i  NN0 )  =  ( ( ZZ>= `  M )  i^i  ( ZZ>= `  0 )
)
23 uzin 9716 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  0  e.  ZZ )  ->  ( ( ZZ>= `  M
)  i^i  ( ZZ>= ` 
0 ) )  =  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )
243, 2, 23sylancl 413 . . . . . . . . 9  |-  ( ph  ->  ( ( ZZ>= `  M
)  i^i  ( ZZ>= ` 
0 ) )  =  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )
2522, 24eqtr2id 2253 . . . . . . . 8  |-  ( ph  ->  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) )  =  ( Z  i^i  NN0 ) )
2625eleq2d 2277 . . . . . . 7  |-  ( ph  ->  ( k  e.  (
ZZ>= `  if ( M  <_  0 ,  0 ,  M ) )  <-> 
k  e.  ( Z  i^i  NN0 ) ) )
2726biimpa 296 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  k  e.  ( Z  i^i  NN0 )
)
2827elin2d 3371 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  k  e.  NN0 )
2911adantr 276 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  A  e.  CC )
3029, 28expcld 10855 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  ( A ^ k )  e.  CC )
31 oveq2 5975 . . . . . 6  |-  ( n  =  k  ->  ( A ^ n )  =  ( A ^ k
) )
32 eqid 2207 . . . . . 6  |-  ( n  e.  NN0  |->  ( A ^ n ) )  =  ( n  e. 
NN0  |->  ( A ^
n ) )
3331, 32fvmptg 5678 . . . . 5  |-  ( ( k  e.  NN0  /\  ( A ^ k )  e.  CC )  -> 
( ( n  e. 
NN0  |->  ( A ^
n ) ) `  k )  =  ( A ^ k ) )
3428, 30, 33syl2anc 411 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  ( (
n  e.  NN0  |->  ( A ^ n ) ) `
 k )  =  ( A ^ k
) )
3510adantr 276 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  A  e.  RR )
3635, 28reexpcld 10872 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  ( A ^ k )  e.  RR )
3734, 36eqeltrd 2284 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  ( (
n  e.  NN0  |->  ( A ^ n ) ) `
 k )  e.  RR )
3827elin1d 3370 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  k  e.  Z )
39 explecnv.6 . . . . . . 7  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
4038, 39syldan 282 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  ( F `  k )  e.  CC )
4140abscld 11607 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  ( abs `  ( F `  k
) )  e.  RR )
42 2fveq3 5604 . . . . . 6  |-  ( n  =  k  ->  ( abs `  ( F `  n ) )  =  ( abs `  ( F `  k )
) )
43 eqid 2207 . . . . . 6  |-  ( n  e.  Z  |->  ( abs `  ( F `  n
) ) )  =  ( n  e.  Z  |->  ( abs `  ( F `  n )
) )
4442, 43fvmptg 5678 . . . . 5  |-  ( ( k  e.  Z  /\  ( abs `  ( F `
 k ) )  e.  RR )  -> 
( ( n  e.  Z  |->  ( abs `  ( F `  n )
) ) `  k
)  =  ( abs `  ( F `  k
) ) )
4538, 41, 44syl2anc 411 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  ( (
n  e.  Z  |->  ( abs `  ( F `
 n ) ) ) `  k )  =  ( abs `  ( F `  k )
) )
4645, 41eqeltrd 2284 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  ( (
n  e.  Z  |->  ( abs `  ( F `
 n ) ) ) `  k )  e.  RR )
47 explecnv.7 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  ( abs `  ( F `  k ) )  <_ 
( A ^ k
) )
4838, 47syldan 282 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  ( abs `  ( F `  k
) )  <_  ( A ^ k ) )
4948, 45, 343brtr4d 4091 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  ( (
n  e.  Z  |->  ( abs `  ( F `
 n ) ) ) `  k )  <_  ( ( n  e.  NN0  |->  ( A ^ n ) ) `
 k ) )
5040absge0d 11610 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  0  <_  ( abs `  ( F `
 k ) ) )
5150, 45breqtrrd 4087 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  0  <_  ( ( n  e.  Z  |->  ( abs `  ( F `  n )
) ) `  k
) )
521, 9, 13, 20, 37, 46, 49, 51climsqz2 11762 . 2  |-  ( ph  ->  ( n  e.  Z  |->  ( abs `  ( F `  n )
) )  ~~>  0 )
53 explecnv.2 . . 3  |-  ( ph  ->  F  e.  V )
54 simpr 110 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  k  e.  Z )
5539abscld 11607 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( abs `  ( F `  k ) )  e.  RR )
5654, 55, 44syl2anc 411 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  (
( n  e.  Z  |->  ( abs `  ( F `  n )
) ) `  k
)  =  ( abs `  ( F `  k
) ) )
5715, 3, 53, 20, 39, 56climabs0 11733 . 2  |-  ( ph  ->  ( F  ~~>  0  <->  (
n  e.  Z  |->  ( abs `  ( F `
 n ) ) )  ~~>  0 ) )
5852, 57mpbird 167 1  |-  ( ph  ->  F  ~~>  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 836    = wceq 1373    e. wcel 2178   _Vcvv 2776    i^i cin 3173   ifcif 3579   class class class wbr 4059    |-> cmpt 4121   ` cfv 5290  (class class class)co 5967   CCcc 7958   RRcr 7959   0cc0 7960   1c1 7961    < clt 8142    <_ cle 8143   NN0cn0 9330   ZZcz 9407   ZZ>=cuz 9683   ^cexp 10720   abscabs 11423    ~~> cli 11704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-clim 11705
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator