ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  explecnv Unicode version

Theorem explecnv 11670
Description: A sequence of terms converges to zero when it is less than powers of a number  A whose absolute value is smaller than 1. (Contributed by NM, 19-Jul-2008.) (Revised by Mario Carneiro, 26-Apr-2014.)
Hypotheses
Ref Expression
explecnv.1  |-  Z  =  ( ZZ>= `  M )
explecnv.2  |-  ( ph  ->  F  e.  V )
explecnv.3  |-  ( ph  ->  M  e.  ZZ )
explecnv.5  |-  ( ph  ->  A  e.  RR )
explecnv.4  |-  ( ph  ->  ( abs `  A
)  <  1 )
explecnv.6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
explecnv.7  |-  ( (
ph  /\  k  e.  Z )  ->  ( abs `  ( F `  k ) )  <_ 
( A ^ k
) )
Assertion
Ref Expression
explecnv  |-  ( ph  ->  F  ~~>  0 )
Distinct variable groups:    A, k    ph, k    k, F    k, Z    k, M
Allowed substitution hint:    V( k)

Proof of Theorem explecnv
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . . 3  |-  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M
) )  =  (
ZZ>= `  if ( M  <_  0 ,  0 ,  M ) )
2 0z 9337 . . . 4  |-  0  e.  ZZ
3 explecnv.3 . . . 4  |-  ( ph  ->  M  e.  ZZ )
4 0zd 9338 . . . . 5  |-  ( ( 0  e.  ZZ  /\  M  e.  ZZ )  ->  0  e.  ZZ )
5 simpr 110 . . . . 5  |-  ( ( 0  e.  ZZ  /\  M  e.  ZZ )  ->  M  e.  ZZ )
6 zdcle 9402 . . . . . 6  |-  ( ( M  e.  ZZ  /\  0  e.  ZZ )  -> DECID  M  <_  0 )
76ancoms 268 . . . . 5  |-  ( ( 0  e.  ZZ  /\  M  e.  ZZ )  -> DECID  M  <_  0 )
84, 5, 7ifcldcd 3597 . . . 4  |-  ( ( 0  e.  ZZ  /\  M  e.  ZZ )  ->  if ( M  <_ 
0 ,  0 ,  M )  e.  ZZ )
92, 3, 8sylancr 414 . . 3  |-  ( ph  ->  if ( M  <_ 
0 ,  0 ,  M )  e.  ZZ )
10 explecnv.5 . . . . 5  |-  ( ph  ->  A  e.  RR )
1110recnd 8055 . . . 4  |-  ( ph  ->  A  e.  CC )
12 explecnv.4 . . . 4  |-  ( ph  ->  ( abs `  A
)  <  1 )
1311, 12expcnv 11669 . . 3  |-  ( ph  ->  ( n  e.  NN0  |->  ( A ^ n ) )  ~~>  0 )
14 zex 9335 . . . . . 6  |-  ZZ  e.  _V
15 explecnv.1 . . . . . . 7  |-  Z  =  ( ZZ>= `  M )
16 uzssz 9621 . . . . . . 7  |-  ( ZZ>= `  M )  C_  ZZ
1715, 16eqsstri 3215 . . . . . 6  |-  Z  C_  ZZ
1814, 17ssexi 4171 . . . . 5  |-  Z  e. 
_V
1918mptex 5788 . . . 4  |-  ( n  e.  Z  |->  ( abs `  ( F `  n
) ) )  e. 
_V
2019a1i 9 . . 3  |-  ( ph  ->  ( n  e.  Z  |->  ( abs `  ( F `  n )
) )  e.  _V )
21 nn0uz 9636 . . . . . . . . . 10  |-  NN0  =  ( ZZ>= `  0 )
2215, 21ineq12i 3362 . . . . . . . . 9  |-  ( Z  i^i  NN0 )  =  ( ( ZZ>= `  M )  i^i  ( ZZ>= `  0 )
)
23 uzin 9634 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  0  e.  ZZ )  ->  ( ( ZZ>= `  M
)  i^i  ( ZZ>= ` 
0 ) )  =  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )
243, 2, 23sylancl 413 . . . . . . . . 9  |-  ( ph  ->  ( ( ZZ>= `  M
)  i^i  ( ZZ>= ` 
0 ) )  =  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )
2522, 24eqtr2id 2242 . . . . . . . 8  |-  ( ph  ->  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) )  =  ( Z  i^i  NN0 ) )
2625eleq2d 2266 . . . . . . 7  |-  ( ph  ->  ( k  e.  (
ZZ>= `  if ( M  <_  0 ,  0 ,  M ) )  <-> 
k  e.  ( Z  i^i  NN0 ) ) )
2726biimpa 296 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  k  e.  ( Z  i^i  NN0 )
)
2827elin2d 3353 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  k  e.  NN0 )
2911adantr 276 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  A  e.  CC )
3029, 28expcld 10765 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  ( A ^ k )  e.  CC )
31 oveq2 5930 . . . . . 6  |-  ( n  =  k  ->  ( A ^ n )  =  ( A ^ k
) )
32 eqid 2196 . . . . . 6  |-  ( n  e.  NN0  |->  ( A ^ n ) )  =  ( n  e. 
NN0  |->  ( A ^
n ) )
3331, 32fvmptg 5637 . . . . 5  |-  ( ( k  e.  NN0  /\  ( A ^ k )  e.  CC )  -> 
( ( n  e. 
NN0  |->  ( A ^
n ) ) `  k )  =  ( A ^ k ) )
3428, 30, 33syl2anc 411 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  ( (
n  e.  NN0  |->  ( A ^ n ) ) `
 k )  =  ( A ^ k
) )
3510adantr 276 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  A  e.  RR )
3635, 28reexpcld 10782 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  ( A ^ k )  e.  RR )
3734, 36eqeltrd 2273 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  ( (
n  e.  NN0  |->  ( A ^ n ) ) `
 k )  e.  RR )
3827elin1d 3352 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  k  e.  Z )
39 explecnv.6 . . . . . . 7  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
4038, 39syldan 282 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  ( F `  k )  e.  CC )
4140abscld 11346 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  ( abs `  ( F `  k
) )  e.  RR )
42 2fveq3 5563 . . . . . 6  |-  ( n  =  k  ->  ( abs `  ( F `  n ) )  =  ( abs `  ( F `  k )
) )
43 eqid 2196 . . . . . 6  |-  ( n  e.  Z  |->  ( abs `  ( F `  n
) ) )  =  ( n  e.  Z  |->  ( abs `  ( F `  n )
) )
4442, 43fvmptg 5637 . . . . 5  |-  ( ( k  e.  Z  /\  ( abs `  ( F `
 k ) )  e.  RR )  -> 
( ( n  e.  Z  |->  ( abs `  ( F `  n )
) ) `  k
)  =  ( abs `  ( F `  k
) ) )
4538, 41, 44syl2anc 411 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  ( (
n  e.  Z  |->  ( abs `  ( F `
 n ) ) ) `  k )  =  ( abs `  ( F `  k )
) )
4645, 41eqeltrd 2273 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  ( (
n  e.  Z  |->  ( abs `  ( F `
 n ) ) ) `  k )  e.  RR )
47 explecnv.7 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  ( abs `  ( F `  k ) )  <_ 
( A ^ k
) )
4838, 47syldan 282 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  ( abs `  ( F `  k
) )  <_  ( A ^ k ) )
4948, 45, 343brtr4d 4065 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  ( (
n  e.  Z  |->  ( abs `  ( F `
 n ) ) ) `  k )  <_  ( ( n  e.  NN0  |->  ( A ^ n ) ) `
 k ) )
5040absge0d 11349 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  0  <_  ( abs `  ( F `
 k ) ) )
5150, 45breqtrrd 4061 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  if ( M  <_  0 ,  0 ,  M ) ) )  ->  0  <_  ( ( n  e.  Z  |->  ( abs `  ( F `  n )
) ) `  k
) )
521, 9, 13, 20, 37, 46, 49, 51climsqz2 11501 . 2  |-  ( ph  ->  ( n  e.  Z  |->  ( abs `  ( F `  n )
) )  ~~>  0 )
53 explecnv.2 . . 3  |-  ( ph  ->  F  e.  V )
54 simpr 110 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  k  e.  Z )
5539abscld 11346 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( abs `  ( F `  k ) )  e.  RR )
5654, 55, 44syl2anc 411 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  (
( n  e.  Z  |->  ( abs `  ( F `  n )
) ) `  k
)  =  ( abs `  ( F `  k
) ) )
5715, 3, 53, 20, 39, 56climabs0 11472 . 2  |-  ( ph  ->  ( F  ~~>  0  <->  (
n  e.  Z  |->  ( abs `  ( F `
 n ) ) )  ~~>  0 ) )
5852, 57mpbird 167 1  |-  ( ph  ->  F  ~~>  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 835    = wceq 1364    e. wcel 2167   _Vcvv 2763    i^i cin 3156   ifcif 3561   class class class wbr 4033    |-> cmpt 4094   ` cfv 5258  (class class class)co 5922   CCcc 7877   RRcr 7878   0cc0 7879   1c1 7880    < clt 8061    <_ cle 8062   NN0cn0 9249   ZZcz 9326   ZZ>=cuz 9601   ^cexp 10630   abscabs 11162    ~~> cli 11443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator