ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elint2 Unicode version

Theorem elint2 3831
Description: Membership in class intersection. (Contributed by NM, 14-Oct-1999.)
Hypothesis
Ref Expression
elint2.1  |-  A  e. 
_V
Assertion
Ref Expression
elint2  |-  ( A  e.  |^| B  <->  A. x  e.  B  A  e.  x )
Distinct variable groups:    x, A    x, B

Proof of Theorem elint2
StepHypRef Expression
1 elint2.1 . . 3  |-  A  e. 
_V
21elint 3830 . 2  |-  ( A  e.  |^| B  <->  A. x
( x  e.  B  ->  A  e.  x ) )
3 df-ral 2449 . 2  |-  ( A. x  e.  B  A  e.  x  <->  A. x ( x  e.  B  ->  A  e.  x ) )
42, 3bitr4i 186 1  |-  ( A  e.  |^| B  <->  A. x  e.  B  A  e.  x )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1341    e. wcel 2136   A.wral 2444   _Vcvv 2726   |^|cint 3824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-int 3825
This theorem is referenced by:  elintg  3832  ssint  3840  intssunim  3846  iinuniss  3948  trint  4095  suplocexprlemmu  7659  suplocexprlemdisj  7661  suplocexprlemloc  7662  suplocexprlemub  7664
  Copyright terms: Public domain W3C validator