ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elint2 Unicode version

Theorem elint2 3906
Description: Membership in class intersection. (Contributed by NM, 14-Oct-1999.)
Hypothesis
Ref Expression
elint2.1  |-  A  e. 
_V
Assertion
Ref Expression
elint2  |-  ( A  e.  |^| B  <->  A. x  e.  B  A  e.  x )
Distinct variable groups:    x, A    x, B

Proof of Theorem elint2
StepHypRef Expression
1 elint2.1 . . 3  |-  A  e. 
_V
21elint 3905 . 2  |-  ( A  e.  |^| B  <->  A. x
( x  e.  B  ->  A  e.  x ) )
3 df-ral 2491 . 2  |-  ( A. x  e.  B  A  e.  x  <->  A. x ( x  e.  B  ->  A  e.  x ) )
42, 3bitr4i 187 1  |-  ( A  e.  |^| B  <->  A. x  e.  B  A  e.  x )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1371    e. wcel 2178   A.wral 2486   _Vcvv 2776   |^|cint 3899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-v 2778  df-int 3900
This theorem is referenced by:  elintg  3907  ssint  3915  intssunim  3921  iinuniss  4024  trint  4173  suplocexprlemmu  7866  suplocexprlemdisj  7868  suplocexprlemloc  7869  suplocexprlemub  7871
  Copyright terms: Public domain W3C validator