ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inteqd Unicode version

Theorem inteqd 3742
Description: Equality deduction for class intersection. (Contributed by NM, 2-Sep-2003.)
Hypothesis
Ref Expression
inteqd.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
inteqd  |-  ( ph  ->  |^| A  =  |^| B )

Proof of Theorem inteqd
StepHypRef Expression
1 inteqd.1 . 2  |-  ( ph  ->  A  =  B )
2 inteq 3740 . 2  |-  ( A  =  B  ->  |^| A  =  |^| B )
31, 2syl 14 1  |-  ( ph  ->  |^| A  =  |^| B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1314   |^|cint 3737
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ral 2395  df-int 3738
This theorem is referenced by:  intprg  3770  op1stbg  4360  onsucmin  4383  elreldm  4725  elxp5  4985  fniinfv  5433  1stval2  6007  2ndval2  6008  fundmen  6654  xpsnen  6668  fiintim  6770  elfi2  6812  fi0  6815  cardcl  6987  isnumi  6988  cardval3ex  6991  carden2bex  6995  clsfval  12113  clsval  12123
  Copyright terms: Public domain W3C validator