| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > inteqd | Unicode version | ||
| Description: Equality deduction for class intersection. (Contributed by NM, 2-Sep-2003.) |
| Ref | Expression |
|---|---|
| inteqd.1 |
|
| Ref | Expression |
|---|---|
| inteqd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inteqd.1 |
. 2
| |
| 2 | inteq 3887 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-int 3885 |
| This theorem is referenced by: intprg 3917 op1stbg 4525 onsucmin 4554 elreldm 4903 elxp5 5170 fniinfv 5636 1stval2 6240 2ndval2 6241 fundmen 6897 xpsnen 6915 fiintim 7027 elfi2 7073 fi0 7076 cardcl 7287 isnumi 7288 cardval3ex 7291 carden2bex 7296 lspfval 14092 lspval 14094 lsppropd 14136 clsfval 14515 clsval 14525 |
| Copyright terms: Public domain | W3C validator |