| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > inteqd | Unicode version | ||
| Description: Equality deduction for class intersection. (Contributed by NM, 2-Sep-2003.) |
| Ref | Expression |
|---|---|
| inteqd.1 |
|
| Ref | Expression |
|---|---|
| inteqd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inteqd.1 |
. 2
| |
| 2 | inteq 3877 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-int 3875 |
| This theorem is referenced by: intprg 3907 op1stbg 4514 onsucmin 4543 elreldm 4892 elxp5 5158 fniinfv 5619 1stval2 6213 2ndval2 6214 fundmen 6865 xpsnen 6880 fiintim 6992 elfi2 7038 fi0 7041 cardcl 7248 isnumi 7249 cardval3ex 7252 carden2bex 7256 lspfval 13944 lspval 13946 lsppropd 13988 clsfval 14337 clsval 14347 |
| Copyright terms: Public domain | W3C validator |