| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > inteqd | Unicode version | ||
| Description: Equality deduction for class intersection. (Contributed by NM, 2-Sep-2003.) |
| Ref | Expression |
|---|---|
| inteqd.1 |
|
| Ref | Expression |
|---|---|
| inteqd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inteqd.1 |
. 2
| |
| 2 | inteq 3878 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-int 3876 |
| This theorem is referenced by: intprg 3908 op1stbg 4515 onsucmin 4544 elreldm 4893 elxp5 5159 fniinfv 5622 1stval2 6222 2ndval2 6223 fundmen 6874 xpsnen 6889 fiintim 7001 elfi2 7047 fi0 7050 cardcl 7259 isnumi 7260 cardval3ex 7263 carden2bex 7268 lspfval 14020 lspval 14022 lsppropd 14064 clsfval 14421 clsval 14431 |
| Copyright terms: Public domain | W3C validator |