| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > inteqd | Unicode version | ||
| Description: Equality deduction for class intersection. (Contributed by NM, 2-Sep-2003.) |
| Ref | Expression |
|---|---|
| inteqd.1 |
|
| Ref | Expression |
|---|---|
| inteqd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inteqd.1 |
. 2
| |
| 2 | inteq 3925 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-int 3923 |
| This theorem is referenced by: intprg 3955 op1stbg 4569 onsucmin 4598 elreldm 4949 elxp5 5216 fniinfv 5691 1stval2 6299 2ndval2 6300 fundmen 6957 xpsnen 6976 fiintim 7089 elfi2 7135 fi0 7138 cardcl 7349 isnumi 7350 cardval3ex 7353 carden2bex 7358 lspfval 14346 lspval 14348 lsppropd 14390 clsfval 14769 clsval 14779 |
| Copyright terms: Public domain | W3C validator |