ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inteqd Unicode version

Theorem inteqd 3875
Description: Equality deduction for class intersection. (Contributed by NM, 2-Sep-2003.)
Hypothesis
Ref Expression
inteqd.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
inteqd  |-  ( ph  ->  |^| A  =  |^| B )

Proof of Theorem inteqd
StepHypRef Expression
1 inteqd.1 . 2  |-  ( ph  ->  A  =  B )
2 inteq 3873 . 2  |-  ( A  =  B  ->  |^| A  =  |^| B )
31, 2syl 14 1  |-  ( ph  ->  |^| A  =  |^| B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   |^|cint 3870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-int 3871
This theorem is referenced by:  intprg  3903  op1stbg  4510  onsucmin  4539  elreldm  4888  elxp5  5154  fniinfv  5615  1stval2  6208  2ndval2  6209  fundmen  6860  xpsnen  6875  fiintim  6985  elfi2  7031  fi0  7034  cardcl  7241  isnumi  7242  cardval3ex  7245  carden2bex  7249  lspfval  13884  lspval  13886  lsppropd  13928  clsfval  14269  clsval  14279
  Copyright terms: Public domain W3C validator