| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > inteqd | Unicode version | ||
| Description: Equality deduction for class intersection. (Contributed by NM, 2-Sep-2003.) |
| Ref | Expression |
|---|---|
| inteqd.1 |
|
| Ref | Expression |
|---|---|
| inteqd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inteqd.1 |
. 2
| |
| 2 | inteq 3894 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-int 3892 |
| This theorem is referenced by: intprg 3924 op1stbg 4534 onsucmin 4563 elreldm 4913 elxp5 5180 fniinfv 5650 1stval2 6254 2ndval2 6255 fundmen 6912 xpsnen 6931 fiintim 7043 elfi2 7089 fi0 7092 cardcl 7303 isnumi 7304 cardval3ex 7307 carden2bex 7312 lspfval 14225 lspval 14227 lsppropd 14269 clsfval 14648 clsval 14658 |
| Copyright terms: Public domain | W3C validator |