ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inteqd Unicode version

Theorem inteqd 3879
Description: Equality deduction for class intersection. (Contributed by NM, 2-Sep-2003.)
Hypothesis
Ref Expression
inteqd.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
inteqd  |-  ( ph  ->  |^| A  =  |^| B )

Proof of Theorem inteqd
StepHypRef Expression
1 inteqd.1 . 2  |-  ( ph  ->  A  =  B )
2 inteq 3877 . 2  |-  ( A  =  B  ->  |^| A  =  |^| B )
31, 2syl 14 1  |-  ( ph  ->  |^| A  =  |^| B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   |^|cint 3874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-int 3875
This theorem is referenced by:  intprg  3907  op1stbg  4514  onsucmin  4543  elreldm  4892  elxp5  5158  fniinfv  5619  1stval2  6213  2ndval2  6214  fundmen  6865  xpsnen  6880  fiintim  6992  elfi2  7038  fi0  7041  cardcl  7248  isnumi  7249  cardval3ex  7252  carden2bex  7256  lspfval  13944  lspval  13946  lsppropd  13988  clsfval  14337  clsval  14347
  Copyright terms: Public domain W3C validator