Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elab2 | Unicode version |
Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.) |
Ref | Expression |
---|---|
elab2.1 | |
elab2.2 | |
elab2.3 |
Ref | Expression |
---|---|
elab2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elab2.1 | . 2 | |
2 | elab2.2 | . . 3 | |
3 | elab2.3 | . . 3 | |
4 | 2, 3 | elab2g 2877 | . 2 |
5 | 1, 4 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1348 wcel 2141 cab 2156 cvv 2730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 |
This theorem is referenced by: elpw 3572 elint 3837 opabid 4242 elrn2 4853 elimasn 4978 oprabid 5885 tfrlem3a 6289 tfrcllemsucaccv 6333 tfrcllembxssdm 6335 tfrcllemres 6341 addnqprlemrl 7519 addnqprlemru 7520 addnqprlemfl 7521 addnqprlemfu 7522 mulnqprlemrl 7535 mulnqprlemru 7536 mulnqprlemfl 7537 mulnqprlemfu 7538 ltnqpr 7555 ltnqpri 7556 archpr 7605 cauappcvgprlemladdfu 7616 cauappcvgprlemladdfl 7617 caucvgprlemladdfu 7639 caucvgprprlemopu 7661 suplocexprlemloc 7683 txuni2 13050 |
Copyright terms: Public domain | W3C validator |