Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elab2 | Unicode version |
Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.) |
Ref | Expression |
---|---|
elab2.1 | |
elab2.2 | |
elab2.3 |
Ref | Expression |
---|---|
elab2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elab2.1 | . 2 | |
2 | elab2.2 | . . 3 | |
3 | elab2.3 | . . 3 | |
4 | 2, 3 | elab2g 2859 | . 2 |
5 | 1, 4 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1335 wcel 2128 cab 2143 cvv 2712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 |
This theorem is referenced by: elpw 3549 elint 3813 opabid 4217 elrn2 4827 elimasn 4952 oprabid 5850 tfrlem3a 6254 tfrcllemsucaccv 6298 tfrcllembxssdm 6300 tfrcllemres 6306 addnqprlemrl 7471 addnqprlemru 7472 addnqprlemfl 7473 addnqprlemfu 7474 mulnqprlemrl 7487 mulnqprlemru 7488 mulnqprlemfl 7489 mulnqprlemfu 7490 ltnqpr 7507 ltnqpri 7508 archpr 7557 cauappcvgprlemladdfu 7568 cauappcvgprlemladdfl 7569 caucvgprlemladdfu 7591 caucvgprprlemopu 7613 suplocexprlemloc 7635 txuni2 12627 |
Copyright terms: Public domain | W3C validator |