| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elab2 | Unicode version | ||
| Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.) |
| Ref | Expression |
|---|---|
| elab2.1 |
|
| elab2.2 |
|
| elab2.3 |
|
| Ref | Expression |
|---|---|
| elab2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elab2.1 |
. 2
| |
| 2 | elab2.2 |
. . 3
| |
| 3 | elab2.3 |
. . 3
| |
| 4 | 2, 3 | elab2g 2950 |
. 2
|
| 5 | 1, 4 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 |
| This theorem is referenced by: elpw 3655 elint 3928 opabid 4343 elrn2 4965 elimasn 5094 oprabid 6032 tfrlem3a 6454 tfrcllemsucaccv 6498 tfrcllembxssdm 6500 tfrcllemres 6506 addnqprlemrl 7740 addnqprlemru 7741 addnqprlemfl 7742 addnqprlemfu 7743 mulnqprlemrl 7756 mulnqprlemru 7757 mulnqprlemfl 7758 mulnqprlemfu 7759 ltnqpr 7776 ltnqpri 7777 archpr 7826 cauappcvgprlemladdfu 7837 cauappcvgprlemladdfl 7838 caucvgprlemladdfu 7860 caucvgprprlemopu 7882 suplocexprlemloc 7904 4sqlem12 12920 txuni2 14924 |
| Copyright terms: Public domain | W3C validator |