| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elab2 | Unicode version | ||
| Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.) |
| Ref | Expression |
|---|---|
| elab2.1 |
|
| elab2.2 |
|
| elab2.3 |
|
| Ref | Expression |
|---|---|
| elab2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elab2.1 |
. 2
| |
| 2 | elab2.2 |
. . 3
| |
| 3 | elab2.3 |
. . 3
| |
| 4 | 2, 3 | elab2g 2919 |
. 2
|
| 5 | 1, 4 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 |
| This theorem is referenced by: elpw 3621 elint 3890 opabid 4300 elrn2 4918 elimasn 5046 oprabid 5966 tfrlem3a 6386 tfrcllemsucaccv 6430 tfrcllembxssdm 6432 tfrcllemres 6438 addnqprlemrl 7652 addnqprlemru 7653 addnqprlemfl 7654 addnqprlemfu 7655 mulnqprlemrl 7668 mulnqprlemru 7669 mulnqprlemfl 7670 mulnqprlemfu 7671 ltnqpr 7688 ltnqpri 7689 archpr 7738 cauappcvgprlemladdfu 7749 cauappcvgprlemladdfl 7750 caucvgprlemladdfu 7772 caucvgprprlemopu 7794 suplocexprlemloc 7816 4sqlem12 12644 txuni2 14646 |
| Copyright terms: Public domain | W3C validator |