| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elab2 | Unicode version | ||
| Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.) |
| Ref | Expression |
|---|---|
| elab2.1 |
|
| elab2.2 |
|
| elab2.3 |
|
| Ref | Expression |
|---|---|
| elab2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elab2.1 |
. 2
| |
| 2 | elab2.2 |
. . 3
| |
| 3 | elab2.3 |
. . 3
| |
| 4 | 2, 3 | elab2g 2911 |
. 2
|
| 5 | 1, 4 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 |
| This theorem is referenced by: elpw 3612 elint 3881 opabid 4291 elrn2 4909 elimasn 5037 oprabid 5955 tfrlem3a 6369 tfrcllemsucaccv 6413 tfrcllembxssdm 6415 tfrcllemres 6421 addnqprlemrl 7626 addnqprlemru 7627 addnqprlemfl 7628 addnqprlemfu 7629 mulnqprlemrl 7642 mulnqprlemru 7643 mulnqprlemfl 7644 mulnqprlemfu 7645 ltnqpr 7662 ltnqpri 7663 archpr 7712 cauappcvgprlemladdfu 7723 cauappcvgprlemladdfl 7724 caucvgprlemladdfu 7746 caucvgprprlemopu 7768 suplocexprlemloc 7790 4sqlem12 12581 txuni2 14502 |
| Copyright terms: Public domain | W3C validator |