| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elab2 | Unicode version | ||
| Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.) |
| Ref | Expression |
|---|---|
| elab2.1 |
|
| elab2.2 |
|
| elab2.3 |
|
| Ref | Expression |
|---|---|
| elab2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elab2.1 |
. 2
| |
| 2 | elab2.2 |
. . 3
| |
| 3 | elab2.3 |
. . 3
| |
| 4 | 2, 3 | elab2g 2924 |
. 2
|
| 5 | 1, 4 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 |
| This theorem is referenced by: elpw 3627 elint 3897 opabid 4310 elrn2 4929 elimasn 5058 oprabid 5989 tfrlem3a 6409 tfrcllemsucaccv 6453 tfrcllembxssdm 6455 tfrcllemres 6461 addnqprlemrl 7690 addnqprlemru 7691 addnqprlemfl 7692 addnqprlemfu 7693 mulnqprlemrl 7706 mulnqprlemru 7707 mulnqprlemfl 7708 mulnqprlemfu 7709 ltnqpr 7726 ltnqpri 7727 archpr 7776 cauappcvgprlemladdfu 7787 cauappcvgprlemladdfl 7788 caucvgprlemladdfu 7810 caucvgprprlemopu 7832 suplocexprlemloc 7854 4sqlem12 12800 txuni2 14803 |
| Copyright terms: Public domain | W3C validator |