ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemmu Unicode version

Theorem suplocexprlemmu 7780
Description: Lemma for suplocexpr 7787. The upper cut of the putative supremum is inhabited. (Contributed by Jim Kingdon, 7-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m  |-  ( ph  ->  E. x  x  e.  A )
suplocexpr.ub  |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
<P  x )
suplocexpr.loc  |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  (
x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )
suplocexpr.b  |-  B  = 
<. U. ( 1st " A
) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } >.
Assertion
Ref Expression
suplocexprlemmu  |-  ( ph  ->  E. s  e.  Q.  s  e.  ( 2nd `  B ) )
Distinct variable groups:    A, s, u, w    x, A, y, s, u    B, s    ph, s, u, x, y
Allowed substitution hints:    ph( z, w)    A( z)    B( x, y, z, w, u)

Proof of Theorem suplocexprlemmu
Dummy variables  j  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suplocexpr.ub . . . 4  |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
<P  x )
2 prop 7537 . . . . . . 7  |-  ( x  e.  P.  ->  <. ( 1st `  x ) ,  ( 2nd `  x
) >.  e.  P. )
3 prmu 7540 . . . . . . 7  |-  ( <.
( 1st `  x
) ,  ( 2nd `  x ) >.  e.  P.  ->  E. s  e.  Q.  s  e.  ( 2nd `  x ) )
42, 3syl 14 . . . . . 6  |-  ( x  e.  P.  ->  E. s  e.  Q.  s  e.  ( 2nd `  x ) )
54ad2antrl 490 . . . . 5  |-  ( (
ph  /\  ( x  e.  P.  /\  A. y  e.  A  y  <P  x ) )  ->  E. s  e.  Q.  s  e.  ( 2nd `  x ) )
6 fo2nd 6213 . . . . . . . . . . . . 13  |-  2nd : _V -onto-> _V
7 fofun 5478 . . . . . . . . . . . . 13  |-  ( 2nd
: _V -onto-> _V  ->  Fun 
2nd )
86, 7ax-mp 5 . . . . . . . . . . . 12  |-  Fun  2nd
9 fvelima 5609 . . . . . . . . . . . 12  |-  ( ( Fun  2nd  /\  t  e.  ( 2nd " A
) )  ->  E. u  e.  A  ( 2nd `  u )  =  t )
108, 9mpan 424 . . . . . . . . . . 11  |-  ( t  e.  ( 2nd " A
)  ->  E. u  e.  A  ( 2nd `  u )  =  t )
1110adantl 277 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( x  e.  P.  /\ 
A. y  e.  A  y  <P  x ) )  /\  s  e.  Q. )  /\  s  e.  ( 2nd `  x ) )  /\  t  e.  ( 2nd " A
) )  ->  E. u  e.  A  ( 2nd `  u )  =  t )
12 suplocexpr.m . . . . . . . . . . . . . . . 16  |-  ( ph  ->  E. x  x  e.  A )
13 suplocexpr.loc . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  (
x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )
1412, 1, 13suplocexprlemss 7777 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  C_  P. )
1514ad5antr 496 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  ( x  e.  P.  /\  A. y  e.  A  y  <P  x ) )  /\  s  e.  Q. )  /\  s  e.  ( 2nd `  x
) )  /\  t  e.  ( 2nd " A
) )  /\  (
u  e.  A  /\  ( 2nd `  u )  =  t ) )  ->  A  C_  P. )
16 simprl 529 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  ( x  e.  P.  /\  A. y  e.  A  y  <P  x ) )  /\  s  e.  Q. )  /\  s  e.  ( 2nd `  x
) )  /\  t  e.  ( 2nd " A
) )  /\  (
u  e.  A  /\  ( 2nd `  u )  =  t ) )  ->  u  e.  A
)
1715, 16sseldd 3181 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  ( x  e.  P.  /\  A. y  e.  A  y  <P  x ) )  /\  s  e.  Q. )  /\  s  e.  ( 2nd `  x
) )  /\  t  e.  ( 2nd " A
) )  /\  (
u  e.  A  /\  ( 2nd `  u )  =  t ) )  ->  u  e.  P. )
18 simprl 529 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  P.  /\  A. y  e.  A  y  <P  x ) )  ->  x  e.  P. )
1918ad4antr 494 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  ( x  e.  P.  /\  A. y  e.  A  y  <P  x ) )  /\  s  e.  Q. )  /\  s  e.  ( 2nd `  x
) )  /\  t  e.  ( 2nd " A
) )  /\  (
u  e.  A  /\  ( 2nd `  u )  =  t ) )  ->  x  e.  P. )
20 breq1 4033 . . . . . . . . . . . . . . 15  |-  ( y  =  u  ->  (
y  <P  x  <->  u  <P  x ) )
21 simprr 531 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  P.  /\  A. y  e.  A  y  <P  x ) )  ->  A. y  e.  A  y  <P  x )
2221ad4antr 494 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  ( x  e.  P.  /\  A. y  e.  A  y  <P  x ) )  /\  s  e.  Q. )  /\  s  e.  ( 2nd `  x
) )  /\  t  e.  ( 2nd " A
) )  /\  (
u  e.  A  /\  ( 2nd `  u )  =  t ) )  ->  A. y  e.  A  y  <P  x )
2320, 22, 16rspcdva 2870 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  ( x  e.  P.  /\  A. y  e.  A  y  <P  x ) )  /\  s  e.  Q. )  /\  s  e.  ( 2nd `  x
) )  /\  t  e.  ( 2nd " A
) )  /\  (
u  e.  A  /\  ( 2nd `  u )  =  t ) )  ->  u  <P  x
)
24 ltsopr 7658 . . . . . . . . . . . . . . . . 17  |-  <P  Or  P.
25 so2nr 4353 . . . . . . . . . . . . . . . . 17  |-  ( ( 
<P  Or  P.  /\  (
u  e.  P.  /\  x  e.  P. )
)  ->  -.  (
u  <P  x  /\  x  <P  u ) )
2624, 25mpan 424 . . . . . . . . . . . . . . . 16  |-  ( ( u  e.  P.  /\  x  e.  P. )  ->  -.  ( u  <P  x  /\  x  <P  u
) )
2717, 19, 26syl2anc 411 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  ( x  e.  P.  /\  A. y  e.  A  y  <P  x ) )  /\  s  e.  Q. )  /\  s  e.  ( 2nd `  x
) )  /\  t  e.  ( 2nd " A
) )  /\  (
u  e.  A  /\  ( 2nd `  u )  =  t ) )  ->  -.  ( u  <P  x  /\  x  <P  u ) )
28 imnan 691 . . . . . . . . . . . . . . 15  |-  ( ( u  <P  x  ->  -.  x  <P  u )  <->  -.  ( u  <P  x  /\  x  <P  u ) )
2927, 28sylibr 134 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  ( x  e.  P.  /\  A. y  e.  A  y  <P  x ) )  /\  s  e.  Q. )  /\  s  e.  ( 2nd `  x
) )  /\  t  e.  ( 2nd " A
) )  /\  (
u  e.  A  /\  ( 2nd `  u )  =  t ) )  ->  ( u  <P  x  ->  -.  x  <P  u ) )
3023, 29mpd 13 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  ( x  e.  P.  /\  A. y  e.  A  y  <P  x ) )  /\  s  e.  Q. )  /\  s  e.  ( 2nd `  x
) )  /\  t  e.  ( 2nd " A
) )  /\  (
u  e.  A  /\  ( 2nd `  u )  =  t ) )  ->  -.  x  <P  u )
31 aptiprlemu 7702 . . . . . . . . . . . . 13  |-  ( ( u  e.  P.  /\  x  e.  P.  /\  -.  x  <P  u )  -> 
( 2nd `  x
)  C_  ( 2nd `  u ) )
3217, 19, 30, 31syl3anc 1249 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  ( x  e.  P.  /\  A. y  e.  A  y  <P  x ) )  /\  s  e.  Q. )  /\  s  e.  ( 2nd `  x
) )  /\  t  e.  ( 2nd " A
) )  /\  (
u  e.  A  /\  ( 2nd `  u )  =  t ) )  ->  ( 2nd `  x
)  C_  ( 2nd `  u ) )
33 simpllr 534 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  ( x  e.  P.  /\  A. y  e.  A  y  <P  x ) )  /\  s  e.  Q. )  /\  s  e.  ( 2nd `  x
) )  /\  t  e.  ( 2nd " A
) )  /\  (
u  e.  A  /\  ( 2nd `  u )  =  t ) )  ->  s  e.  ( 2nd `  x ) )
3432, 33sseldd 3181 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  ( x  e.  P.  /\  A. y  e.  A  y  <P  x ) )  /\  s  e.  Q. )  /\  s  e.  ( 2nd `  x
) )  /\  t  e.  ( 2nd " A
) )  /\  (
u  e.  A  /\  ( 2nd `  u )  =  t ) )  ->  s  e.  ( 2nd `  u ) )
35 simprr 531 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  ( x  e.  P.  /\  A. y  e.  A  y  <P  x ) )  /\  s  e.  Q. )  /\  s  e.  ( 2nd `  x
) )  /\  t  e.  ( 2nd " A
) )  /\  (
u  e.  A  /\  ( 2nd `  u )  =  t ) )  ->  ( 2nd `  u
)  =  t )
3634, 35eleqtrd 2272 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  ( x  e.  P.  /\  A. y  e.  A  y  <P  x ) )  /\  s  e.  Q. )  /\  s  e.  ( 2nd `  x
) )  /\  t  e.  ( 2nd " A
) )  /\  (
u  e.  A  /\  ( 2nd `  u )  =  t ) )  ->  s  e.  t )
3711, 36rexlimddv 2616 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  P.  /\ 
A. y  e.  A  y  <P  x ) )  /\  s  e.  Q. )  /\  s  e.  ( 2nd `  x ) )  /\  t  e.  ( 2nd " A
) )  ->  s  e.  t )
3837ralrimiva 2567 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( x  e.  P.  /\ 
A. y  e.  A  y  <P  x ) )  /\  s  e.  Q. )  /\  s  e.  ( 2nd `  x ) )  ->  A. t  e.  ( 2nd " A
) s  e.  t )
39 vex 2763 . . . . . . . . 9  |-  s  e. 
_V
4039elint2 3878 . . . . . . . 8  |-  ( s  e.  |^| ( 2nd " A
)  <->  A. t  e.  ( 2nd " A ) s  e.  t )
4138, 40sylibr 134 . . . . . . 7  |-  ( ( ( ( ph  /\  ( x  e.  P.  /\ 
A. y  e.  A  y  <P  x ) )  /\  s  e.  Q. )  /\  s  e.  ( 2nd `  x ) )  ->  s  e.  |^| ( 2nd " A
) )
4241ex 115 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  P.  /\  A. y  e.  A  y 
<P  x ) )  /\  s  e.  Q. )  ->  ( s  e.  ( 2nd `  x )  ->  s  e.  |^| ( 2nd " A ) ) )
4342reximdva 2596 . . . . 5  |-  ( (
ph  /\  ( x  e.  P.  /\  A. y  e.  A  y  <P  x ) )  ->  ( E. s  e.  Q.  s  e.  ( 2nd `  x )  ->  E. s  e.  Q.  s  e.  |^| ( 2nd " A ) ) )
445, 43mpd 13 . . . 4  |-  ( (
ph  /\  ( x  e.  P.  /\  A. y  e.  A  y  <P  x ) )  ->  E. s  e.  Q.  s  e.  |^| ( 2nd " A ) )
451, 44rexlimddv 2616 . . 3  |-  ( ph  ->  E. s  e.  Q.  s  e.  |^| ( 2nd " A ) )
46 simprr 531 . . . . . . 7  |-  ( (
ph  /\  ( s  e.  Q.  /\  s  e. 
|^| ( 2nd " A
) ) )  -> 
s  e.  |^| ( 2nd " A ) )
47 simprl 529 . . . . . . . . 9  |-  ( (
ph  /\  ( s  e.  Q.  /\  s  e. 
|^| ( 2nd " A
) ) )  -> 
s  e.  Q. )
48 1nq 7428 . . . . . . . . 9  |-  1Q  e.  Q.
49 addclnq 7437 . . . . . . . . 9  |-  ( ( s  e.  Q.  /\  1Q  e.  Q. )  -> 
( s  +Q  1Q )  e.  Q. )
5047, 48, 49sylancl 413 . . . . . . . 8  |-  ( (
ph  /\  ( s  e.  Q.  /\  s  e. 
|^| ( 2nd " A
) ) )  -> 
( s  +Q  1Q )  e.  Q. )
51 ltaddnq 7469 . . . . . . . . 9  |-  ( ( s  e.  Q.  /\  1Q  e.  Q. )  -> 
s  <Q  ( s  +Q  1Q ) )
5247, 48, 51sylancl 413 . . . . . . . 8  |-  ( (
ph  /\  ( s  e.  Q.  /\  s  e. 
|^| ( 2nd " A
) ) )  -> 
s  <Q  ( s  +Q  1Q ) )
53 breq2 4034 . . . . . . . . 9  |-  ( j  =  ( s  +Q  1Q )  ->  (
s  <Q  j  <->  s  <Q  ( s  +Q  1Q ) ) )
5453rspcev 2865 . . . . . . . 8  |-  ( ( ( s  +Q  1Q )  e.  Q.  /\  s  <Q  ( s  +Q  1Q ) )  ->  E. j  e.  Q.  s  <Q  j
)
5550, 52, 54syl2anc 411 . . . . . . 7  |-  ( (
ph  /\  ( s  e.  Q.  /\  s  e. 
|^| ( 2nd " A
) ) )  ->  E. j  e.  Q.  s  <Q  j )
56 breq1 4033 . . . . . . . . 9  |-  ( w  =  s  ->  (
w  <Q  j  <->  s  <Q  j ) )
5756rexbidv 2495 . . . . . . . 8  |-  ( w  =  s  ->  ( E. j  e.  Q.  w  <Q  j  <->  E. j  e.  Q.  s  <Q  j
) )
5857rspcev 2865 . . . . . . 7  |-  ( ( s  e.  |^| ( 2nd " A )  /\  E. j  e.  Q.  s  <Q  j )  ->  E. w  e.  |^| ( 2nd " A
) E. j  e. 
Q.  w  <Q  j
)
5946, 55, 58syl2anc 411 . . . . . 6  |-  ( (
ph  /\  ( s  e.  Q.  /\  s  e. 
|^| ( 2nd " A
) ) )  ->  E. w  e.  |^| ( 2nd " A ) E. j  e.  Q.  w  <Q  j )
60 rexcom 2658 . . . . . 6  |-  ( E. w  e.  |^| ( 2nd " A ) E. j  e.  Q.  w  <Q  j  <->  E. j  e.  Q.  E. w  e.  |^| ( 2nd " A ) w 
<Q  j )
6159, 60sylib 122 . . . . 5  |-  ( (
ph  /\  ( s  e.  Q.  /\  s  e. 
|^| ( 2nd " A
) ) )  ->  E. j  e.  Q.  E. w  e.  |^| ( 2nd " A ) w 
<Q  j )
62 ssid 3200 . . . . . 6  |-  Q.  C_  Q.
63 rexss 3247 . . . . . 6  |-  ( Q.  C_  Q.  ->  ( E. j  e.  Q.  E. w  e.  |^| ( 2nd " A
) w  <Q  j  <->  E. j  e.  Q.  (
j  e.  Q.  /\  E. w  e.  |^| ( 2nd " A ) w 
<Q  j ) ) )
6462, 63ax-mp 5 . . . . 5  |-  ( E. j  e.  Q.  E. w  e.  |^| ( 2nd " A ) w  <Q  j  <->  E. j  e.  Q.  ( j  e.  Q.  /\ 
E. w  e.  |^| ( 2nd " A ) w  <Q  j )
)
6561, 64sylib 122 . . . 4  |-  ( (
ph  /\  ( s  e.  Q.  /\  s  e. 
|^| ( 2nd " A
) ) )  ->  E. j  e.  Q.  ( j  e.  Q.  /\ 
E. w  e.  |^| ( 2nd " A ) w  <Q  j )
)
66 suplocexpr.b . . . . . . . . . 10  |-  B  = 
<. U. ( 1st " A
) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } >.
6766suplocexprlem2b 7776 . . . . . . . . 9  |-  ( A 
C_  P.  ->  ( 2nd `  B )  =  {
u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w 
<Q  u } )
6814, 67syl 14 . . . . . . . 8  |-  ( ph  ->  ( 2nd `  B
)  =  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } )
6968eleq2d 2263 . . . . . . 7  |-  ( ph  ->  ( j  e.  ( 2nd `  B )  <-> 
j  e.  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } ) )
70 breq2 4034 . . . . . . . . 9  |-  ( u  =  j  ->  (
w  <Q  u  <->  w  <Q  j ) )
7170rexbidv 2495 . . . . . . . 8  |-  ( u  =  j  ->  ( E. w  e.  |^| ( 2nd " A ) w 
<Q  u  <->  E. w  e.  |^| ( 2nd " A ) w  <Q  j )
)
7271elrab 2917 . . . . . . 7  |-  ( j  e.  { u  e. 
Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } 
<->  ( j  e.  Q.  /\ 
E. w  e.  |^| ( 2nd " A ) w  <Q  j )
)
7369, 72bitrdi 196 . . . . . 6  |-  ( ph  ->  ( j  e.  ( 2nd `  B )  <-> 
( j  e.  Q.  /\ 
E. w  e.  |^| ( 2nd " A ) w  <Q  j )
) )
7473rexbidv 2495 . . . . 5  |-  ( ph  ->  ( E. j  e. 
Q.  j  e.  ( 2nd `  B )  <->  E. j  e.  Q.  ( j  e.  Q.  /\ 
E. w  e.  |^| ( 2nd " A ) w  <Q  j )
) )
7574adantr 276 . . . 4  |-  ( (
ph  /\  ( s  e.  Q.  /\  s  e. 
|^| ( 2nd " A
) ) )  -> 
( E. j  e. 
Q.  j  e.  ( 2nd `  B )  <->  E. j  e.  Q.  ( j  e.  Q.  /\ 
E. w  e.  |^| ( 2nd " A ) w  <Q  j )
) )
7665, 75mpbird 167 . . 3  |-  ( (
ph  /\  ( s  e.  Q.  /\  s  e. 
|^| ( 2nd " A
) ) )  ->  E. j  e.  Q.  j  e.  ( 2nd `  B ) )
7745, 76rexlimddv 2616 . 2  |-  ( ph  ->  E. j  e.  Q.  j  e.  ( 2nd `  B ) )
78 eleq1w 2254 . . 3  |-  ( j  =  s  ->  (
j  e.  ( 2nd `  B )  <->  s  e.  ( 2nd `  B ) ) )
7978cbvrexv 2727 . 2  |-  ( E. j  e.  Q.  j  e.  ( 2nd `  B
)  <->  E. s  e.  Q.  s  e.  ( 2nd `  B ) )
8077, 79sylib 122 1  |-  ( ph  ->  E. s  e.  Q.  s  e.  ( 2nd `  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364   E.wex 1503    e. wcel 2164   A.wral 2472   E.wrex 2473   {crab 2476   _Vcvv 2760    C_ wss 3154   <.cop 3622   U.cuni 3836   |^|cint 3871   class class class wbr 4030    Or wor 4327   "cima 4663   Fun wfun 5249   -onto->wfo 5253   ` cfv 5255  (class class class)co 5919   1stc1st 6193   2ndc2nd 6194   Q.cnq 7342   1Qc1q 7343    +Q cplq 7344    <Q cltq 7347   P.cnp 7353    <P cltp 7357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-eprel 4321  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-1o 6471  df-2o 6472  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-pli 7367  df-mi 7368  df-lti 7369  df-plpq 7406  df-mpq 7407  df-enq 7409  df-nqqs 7410  df-plqqs 7411  df-mqqs 7412  df-1nqqs 7413  df-rq 7414  df-ltnqqs 7415  df-enq0 7486  df-nq0 7487  df-0nq0 7488  df-plq0 7489  df-mq0 7490  df-inp 7528  df-iltp 7532
This theorem is referenced by:  suplocexprlemex  7784
  Copyright terms: Public domain W3C validator