ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemmu Unicode version

Theorem suplocexprlemmu 7659
Description: Lemma for suplocexpr 7666. The upper cut of the putative supremum is inhabited. (Contributed by Jim Kingdon, 7-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m  |-  ( ph  ->  E. x  x  e.  A )
suplocexpr.ub  |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
<P  x )
suplocexpr.loc  |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  (
x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )
suplocexpr.b  |-  B  = 
<. U. ( 1st " A
) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } >.
Assertion
Ref Expression
suplocexprlemmu  |-  ( ph  ->  E. s  e.  Q.  s  e.  ( 2nd `  B ) )
Distinct variable groups:    A, s, u, w    x, A, y, s, u    B, s    ph, s, u, x, y
Allowed substitution hints:    ph( z, w)    A( z)    B( x, y, z, w, u)

Proof of Theorem suplocexprlemmu
Dummy variables  j  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suplocexpr.ub . . . 4  |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
<P  x )
2 prop 7416 . . . . . . 7  |-  ( x  e.  P.  ->  <. ( 1st `  x ) ,  ( 2nd `  x
) >.  e.  P. )
3 prmu 7419 . . . . . . 7  |-  ( <.
( 1st `  x
) ,  ( 2nd `  x ) >.  e.  P.  ->  E. s  e.  Q.  s  e.  ( 2nd `  x ) )
42, 3syl 14 . . . . . 6  |-  ( x  e.  P.  ->  E. s  e.  Q.  s  e.  ( 2nd `  x ) )
54ad2antrl 482 . . . . 5  |-  ( (
ph  /\  ( x  e.  P.  /\  A. y  e.  A  y  <P  x ) )  ->  E. s  e.  Q.  s  e.  ( 2nd `  x ) )
6 fo2nd 6126 . . . . . . . . . . . . 13  |-  2nd : _V -onto-> _V
7 fofun 5411 . . . . . . . . . . . . 13  |-  ( 2nd
: _V -onto-> _V  ->  Fun 
2nd )
86, 7ax-mp 5 . . . . . . . . . . . 12  |-  Fun  2nd
9 fvelima 5538 . . . . . . . . . . . 12  |-  ( ( Fun  2nd  /\  t  e.  ( 2nd " A
) )  ->  E. u  e.  A  ( 2nd `  u )  =  t )
108, 9mpan 421 . . . . . . . . . . 11  |-  ( t  e.  ( 2nd " A
)  ->  E. u  e.  A  ( 2nd `  u )  =  t )
1110adantl 275 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( x  e.  P.  /\ 
A. y  e.  A  y  <P  x ) )  /\  s  e.  Q. )  /\  s  e.  ( 2nd `  x ) )  /\  t  e.  ( 2nd " A
) )  ->  E. u  e.  A  ( 2nd `  u )  =  t )
12 suplocexpr.m . . . . . . . . . . . . . . . 16  |-  ( ph  ->  E. x  x  e.  A )
13 suplocexpr.loc . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  (
x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )
1412, 1, 13suplocexprlemss 7656 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  C_  P. )
1514ad5antr 488 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  ( x  e.  P.  /\  A. y  e.  A  y  <P  x ) )  /\  s  e.  Q. )  /\  s  e.  ( 2nd `  x
) )  /\  t  e.  ( 2nd " A
) )  /\  (
u  e.  A  /\  ( 2nd `  u )  =  t ) )  ->  A  C_  P. )
16 simprl 521 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  ( x  e.  P.  /\  A. y  e.  A  y  <P  x ) )  /\  s  e.  Q. )  /\  s  e.  ( 2nd `  x
) )  /\  t  e.  ( 2nd " A
) )  /\  (
u  e.  A  /\  ( 2nd `  u )  =  t ) )  ->  u  e.  A
)
1715, 16sseldd 3143 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  ( x  e.  P.  /\  A. y  e.  A  y  <P  x ) )  /\  s  e.  Q. )  /\  s  e.  ( 2nd `  x
) )  /\  t  e.  ( 2nd " A
) )  /\  (
u  e.  A  /\  ( 2nd `  u )  =  t ) )  ->  u  e.  P. )
18 simprl 521 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  P.  /\  A. y  e.  A  y  <P  x ) )  ->  x  e.  P. )
1918ad4antr 486 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  ( x  e.  P.  /\  A. y  e.  A  y  <P  x ) )  /\  s  e.  Q. )  /\  s  e.  ( 2nd `  x
) )  /\  t  e.  ( 2nd " A
) )  /\  (
u  e.  A  /\  ( 2nd `  u )  =  t ) )  ->  x  e.  P. )
20 breq1 3985 . . . . . . . . . . . . . . 15  |-  ( y  =  u  ->  (
y  <P  x  <->  u  <P  x ) )
21 simprr 522 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  P.  /\  A. y  e.  A  y  <P  x ) )  ->  A. y  e.  A  y  <P  x )
2221ad4antr 486 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  ( x  e.  P.  /\  A. y  e.  A  y  <P  x ) )  /\  s  e.  Q. )  /\  s  e.  ( 2nd `  x
) )  /\  t  e.  ( 2nd " A
) )  /\  (
u  e.  A  /\  ( 2nd `  u )  =  t ) )  ->  A. y  e.  A  y  <P  x )
2320, 22, 16rspcdva 2835 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  ( x  e.  P.  /\  A. y  e.  A  y  <P  x ) )  /\  s  e.  Q. )  /\  s  e.  ( 2nd `  x
) )  /\  t  e.  ( 2nd " A
) )  /\  (
u  e.  A  /\  ( 2nd `  u )  =  t ) )  ->  u  <P  x
)
24 ltsopr 7537 . . . . . . . . . . . . . . . . 17  |-  <P  Or  P.
25 so2nr 4299 . . . . . . . . . . . . . . . . 17  |-  ( ( 
<P  Or  P.  /\  (
u  e.  P.  /\  x  e.  P. )
)  ->  -.  (
u  <P  x  /\  x  <P  u ) )
2624, 25mpan 421 . . . . . . . . . . . . . . . 16  |-  ( ( u  e.  P.  /\  x  e.  P. )  ->  -.  ( u  <P  x  /\  x  <P  u
) )
2717, 19, 26syl2anc 409 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  ( x  e.  P.  /\  A. y  e.  A  y  <P  x ) )  /\  s  e.  Q. )  /\  s  e.  ( 2nd `  x
) )  /\  t  e.  ( 2nd " A
) )  /\  (
u  e.  A  /\  ( 2nd `  u )  =  t ) )  ->  -.  ( u  <P  x  /\  x  <P  u ) )
28 imnan 680 . . . . . . . . . . . . . . 15  |-  ( ( u  <P  x  ->  -.  x  <P  u )  <->  -.  ( u  <P  x  /\  x  <P  u ) )
2927, 28sylibr 133 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  ( x  e.  P.  /\  A. y  e.  A  y  <P  x ) )  /\  s  e.  Q. )  /\  s  e.  ( 2nd `  x
) )  /\  t  e.  ( 2nd " A
) )  /\  (
u  e.  A  /\  ( 2nd `  u )  =  t ) )  ->  ( u  <P  x  ->  -.  x  <P  u ) )
3023, 29mpd 13 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  ( x  e.  P.  /\  A. y  e.  A  y  <P  x ) )  /\  s  e.  Q. )  /\  s  e.  ( 2nd `  x
) )  /\  t  e.  ( 2nd " A
) )  /\  (
u  e.  A  /\  ( 2nd `  u )  =  t ) )  ->  -.  x  <P  u )
31 aptiprlemu 7581 . . . . . . . . . . . . 13  |-  ( ( u  e.  P.  /\  x  e.  P.  /\  -.  x  <P  u )  -> 
( 2nd `  x
)  C_  ( 2nd `  u ) )
3217, 19, 30, 31syl3anc 1228 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  ( x  e.  P.  /\  A. y  e.  A  y  <P  x ) )  /\  s  e.  Q. )  /\  s  e.  ( 2nd `  x
) )  /\  t  e.  ( 2nd " A
) )  /\  (
u  e.  A  /\  ( 2nd `  u )  =  t ) )  ->  ( 2nd `  x
)  C_  ( 2nd `  u ) )
33 simpllr 524 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  ( x  e.  P.  /\  A. y  e.  A  y  <P  x ) )  /\  s  e.  Q. )  /\  s  e.  ( 2nd `  x
) )  /\  t  e.  ( 2nd " A
) )  /\  (
u  e.  A  /\  ( 2nd `  u )  =  t ) )  ->  s  e.  ( 2nd `  x ) )
3432, 33sseldd 3143 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  ( x  e.  P.  /\  A. y  e.  A  y  <P  x ) )  /\  s  e.  Q. )  /\  s  e.  ( 2nd `  x
) )  /\  t  e.  ( 2nd " A
) )  /\  (
u  e.  A  /\  ( 2nd `  u )  =  t ) )  ->  s  e.  ( 2nd `  u ) )
35 simprr 522 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  ( x  e.  P.  /\  A. y  e.  A  y  <P  x ) )  /\  s  e.  Q. )  /\  s  e.  ( 2nd `  x
) )  /\  t  e.  ( 2nd " A
) )  /\  (
u  e.  A  /\  ( 2nd `  u )  =  t ) )  ->  ( 2nd `  u
)  =  t )
3634, 35eleqtrd 2245 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  ( x  e.  P.  /\  A. y  e.  A  y  <P  x ) )  /\  s  e.  Q. )  /\  s  e.  ( 2nd `  x
) )  /\  t  e.  ( 2nd " A
) )  /\  (
u  e.  A  /\  ( 2nd `  u )  =  t ) )  ->  s  e.  t )
3711, 36rexlimddv 2588 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( x  e.  P.  /\ 
A. y  e.  A  y  <P  x ) )  /\  s  e.  Q. )  /\  s  e.  ( 2nd `  x ) )  /\  t  e.  ( 2nd " A
) )  ->  s  e.  t )
3837ralrimiva 2539 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( x  e.  P.  /\ 
A. y  e.  A  y  <P  x ) )  /\  s  e.  Q. )  /\  s  e.  ( 2nd `  x ) )  ->  A. t  e.  ( 2nd " A
) s  e.  t )
39 vex 2729 . . . . . . . . 9  |-  s  e. 
_V
4039elint2 3831 . . . . . . . 8  |-  ( s  e.  |^| ( 2nd " A
)  <->  A. t  e.  ( 2nd " A ) s  e.  t )
4138, 40sylibr 133 . . . . . . 7  |-  ( ( ( ( ph  /\  ( x  e.  P.  /\ 
A. y  e.  A  y  <P  x ) )  /\  s  e.  Q. )  /\  s  e.  ( 2nd `  x ) )  ->  s  e.  |^| ( 2nd " A
) )
4241ex 114 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  P.  /\  A. y  e.  A  y 
<P  x ) )  /\  s  e.  Q. )  ->  ( s  e.  ( 2nd `  x )  ->  s  e.  |^| ( 2nd " A ) ) )
4342reximdva 2568 . . . . 5  |-  ( (
ph  /\  ( x  e.  P.  /\  A. y  e.  A  y  <P  x ) )  ->  ( E. s  e.  Q.  s  e.  ( 2nd `  x )  ->  E. s  e.  Q.  s  e.  |^| ( 2nd " A ) ) )
445, 43mpd 13 . . . 4  |-  ( (
ph  /\  ( x  e.  P.  /\  A. y  e.  A  y  <P  x ) )  ->  E. s  e.  Q.  s  e.  |^| ( 2nd " A ) )
451, 44rexlimddv 2588 . . 3  |-  ( ph  ->  E. s  e.  Q.  s  e.  |^| ( 2nd " A ) )
46 simprr 522 . . . . . . 7  |-  ( (
ph  /\  ( s  e.  Q.  /\  s  e. 
|^| ( 2nd " A
) ) )  -> 
s  e.  |^| ( 2nd " A ) )
47 simprl 521 . . . . . . . . 9  |-  ( (
ph  /\  ( s  e.  Q.  /\  s  e. 
|^| ( 2nd " A
) ) )  -> 
s  e.  Q. )
48 1nq 7307 . . . . . . . . 9  |-  1Q  e.  Q.
49 addclnq 7316 . . . . . . . . 9  |-  ( ( s  e.  Q.  /\  1Q  e.  Q. )  -> 
( s  +Q  1Q )  e.  Q. )
5047, 48, 49sylancl 410 . . . . . . . 8  |-  ( (
ph  /\  ( s  e.  Q.  /\  s  e. 
|^| ( 2nd " A
) ) )  -> 
( s  +Q  1Q )  e.  Q. )
51 ltaddnq 7348 . . . . . . . . 9  |-  ( ( s  e.  Q.  /\  1Q  e.  Q. )  -> 
s  <Q  ( s  +Q  1Q ) )
5247, 48, 51sylancl 410 . . . . . . . 8  |-  ( (
ph  /\  ( s  e.  Q.  /\  s  e. 
|^| ( 2nd " A
) ) )  -> 
s  <Q  ( s  +Q  1Q ) )
53 breq2 3986 . . . . . . . . 9  |-  ( j  =  ( s  +Q  1Q )  ->  (
s  <Q  j  <->  s  <Q  ( s  +Q  1Q ) ) )
5453rspcev 2830 . . . . . . . 8  |-  ( ( ( s  +Q  1Q )  e.  Q.  /\  s  <Q  ( s  +Q  1Q ) )  ->  E. j  e.  Q.  s  <Q  j
)
5550, 52, 54syl2anc 409 . . . . . . 7  |-  ( (
ph  /\  ( s  e.  Q.  /\  s  e. 
|^| ( 2nd " A
) ) )  ->  E. j  e.  Q.  s  <Q  j )
56 breq1 3985 . . . . . . . . 9  |-  ( w  =  s  ->  (
w  <Q  j  <->  s  <Q  j ) )
5756rexbidv 2467 . . . . . . . 8  |-  ( w  =  s  ->  ( E. j  e.  Q.  w  <Q  j  <->  E. j  e.  Q.  s  <Q  j
) )
5857rspcev 2830 . . . . . . 7  |-  ( ( s  e.  |^| ( 2nd " A )  /\  E. j  e.  Q.  s  <Q  j )  ->  E. w  e.  |^| ( 2nd " A
) E. j  e. 
Q.  w  <Q  j
)
5946, 55, 58syl2anc 409 . . . . . 6  |-  ( (
ph  /\  ( s  e.  Q.  /\  s  e. 
|^| ( 2nd " A
) ) )  ->  E. w  e.  |^| ( 2nd " A ) E. j  e.  Q.  w  <Q  j )
60 rexcom 2630 . . . . . 6  |-  ( E. w  e.  |^| ( 2nd " A ) E. j  e.  Q.  w  <Q  j  <->  E. j  e.  Q.  E. w  e.  |^| ( 2nd " A ) w 
<Q  j )
6159, 60sylib 121 . . . . 5  |-  ( (
ph  /\  ( s  e.  Q.  /\  s  e. 
|^| ( 2nd " A
) ) )  ->  E. j  e.  Q.  E. w  e.  |^| ( 2nd " A ) w 
<Q  j )
62 ssid 3162 . . . . . 6  |-  Q.  C_  Q.
63 rexss 3209 . . . . . 6  |-  ( Q.  C_  Q.  ->  ( E. j  e.  Q.  E. w  e.  |^| ( 2nd " A
) w  <Q  j  <->  E. j  e.  Q.  (
j  e.  Q.  /\  E. w  e.  |^| ( 2nd " A ) w 
<Q  j ) ) )
6462, 63ax-mp 5 . . . . 5  |-  ( E. j  e.  Q.  E. w  e.  |^| ( 2nd " A ) w  <Q  j  <->  E. j  e.  Q.  ( j  e.  Q.  /\ 
E. w  e.  |^| ( 2nd " A ) w  <Q  j )
)
6561, 64sylib 121 . . . 4  |-  ( (
ph  /\  ( s  e.  Q.  /\  s  e. 
|^| ( 2nd " A
) ) )  ->  E. j  e.  Q.  ( j  e.  Q.  /\ 
E. w  e.  |^| ( 2nd " A ) w  <Q  j )
)
66 suplocexpr.b . . . . . . . . . 10  |-  B  = 
<. U. ( 1st " A
) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } >.
6766suplocexprlem2b 7655 . . . . . . . . 9  |-  ( A 
C_  P.  ->  ( 2nd `  B )  =  {
u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w 
<Q  u } )
6814, 67syl 14 . . . . . . . 8  |-  ( ph  ->  ( 2nd `  B
)  =  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } )
6968eleq2d 2236 . . . . . . 7  |-  ( ph  ->  ( j  e.  ( 2nd `  B )  <-> 
j  e.  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } ) )
70 breq2 3986 . . . . . . . . 9  |-  ( u  =  j  ->  (
w  <Q  u  <->  w  <Q  j ) )
7170rexbidv 2467 . . . . . . . 8  |-  ( u  =  j  ->  ( E. w  e.  |^| ( 2nd " A ) w 
<Q  u  <->  E. w  e.  |^| ( 2nd " A ) w  <Q  j )
)
7271elrab 2882 . . . . . . 7  |-  ( j  e.  { u  e. 
Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } 
<->  ( j  e.  Q.  /\ 
E. w  e.  |^| ( 2nd " A ) w  <Q  j )
)
7369, 72bitrdi 195 . . . . . 6  |-  ( ph  ->  ( j  e.  ( 2nd `  B )  <-> 
( j  e.  Q.  /\ 
E. w  e.  |^| ( 2nd " A ) w  <Q  j )
) )
7473rexbidv 2467 . . . . 5  |-  ( ph  ->  ( E. j  e. 
Q.  j  e.  ( 2nd `  B )  <->  E. j  e.  Q.  ( j  e.  Q.  /\ 
E. w  e.  |^| ( 2nd " A ) w  <Q  j )
) )
7574adantr 274 . . . 4  |-  ( (
ph  /\  ( s  e.  Q.  /\  s  e. 
|^| ( 2nd " A
) ) )  -> 
( E. j  e. 
Q.  j  e.  ( 2nd `  B )  <->  E. j  e.  Q.  ( j  e.  Q.  /\ 
E. w  e.  |^| ( 2nd " A ) w  <Q  j )
) )
7665, 75mpbird 166 . . 3  |-  ( (
ph  /\  ( s  e.  Q.  /\  s  e. 
|^| ( 2nd " A
) ) )  ->  E. j  e.  Q.  j  e.  ( 2nd `  B ) )
7745, 76rexlimddv 2588 . 2  |-  ( ph  ->  E. j  e.  Q.  j  e.  ( 2nd `  B ) )
78 eleq1w 2227 . . 3  |-  ( j  =  s  ->  (
j  e.  ( 2nd `  B )  <->  s  e.  ( 2nd `  B ) ) )
7978cbvrexv 2693 . 2  |-  ( E. j  e.  Q.  j  e.  ( 2nd `  B
)  <->  E. s  e.  Q.  s  e.  ( 2nd `  B ) )
8077, 79sylib 121 1  |-  ( ph  ->  E. s  e.  Q.  s  e.  ( 2nd `  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    = wceq 1343   E.wex 1480    e. wcel 2136   A.wral 2444   E.wrex 2445   {crab 2448   _Vcvv 2726    C_ wss 3116   <.cop 3579   U.cuni 3789   |^|cint 3824   class class class wbr 3982    Or wor 4273   "cima 4607   Fun wfun 5182   -onto->wfo 5186   ` cfv 5188  (class class class)co 5842   1stc1st 6106   2ndc2nd 6107   Q.cnq 7221   1Qc1q 7222    +Q cplq 7223    <Q cltq 7226   P.cnp 7232    <P cltp 7236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-2o 6385  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-enq0 7365  df-nq0 7366  df-0nq0 7367  df-plq0 7368  df-mq0 7369  df-inp 7407  df-iltp 7411
This theorem is referenced by:  suplocexprlemex  7663
  Copyright terms: Public domain W3C validator