| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elint2 | GIF version | ||
| Description: Membership in class intersection. (Contributed by NM, 14-Oct-1999.) |
| Ref | Expression |
|---|---|
| elint2.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| elint2 | ⊢ (𝐴 ∈ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elint2.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | 1 | elint 3928 | . 2 ⊢ (𝐴 ∈ ∩ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝐴 ∈ 𝑥)) |
| 3 | df-ral 2513 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝐴 ∈ 𝑥)) | |
| 4 | 2, 3 | bitr4i 187 | 1 ⊢ (𝐴 ∈ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1393 ∈ wcel 2200 ∀wral 2508 Vcvv 2799 ∩ cint 3922 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-int 3923 |
| This theorem is referenced by: elintg 3930 ssint 3938 intssunim 3944 iinuniss 4047 trint 4196 suplocexprlemmu 7901 suplocexprlemdisj 7903 suplocexprlemloc 7904 suplocexprlemub 7906 |
| Copyright terms: Public domain | W3C validator |