ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elint2 GIF version

Theorem elint2 3891
Description: Membership in class intersection. (Contributed by NM, 14-Oct-1999.)
Hypothesis
Ref Expression
elint2.1 𝐴 ∈ V
Assertion
Ref Expression
elint2 (𝐴 𝐵 ↔ ∀𝑥𝐵 𝐴𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem elint2
StepHypRef Expression
1 elint2.1 . . 3 𝐴 ∈ V
21elint 3890 . 2 (𝐴 𝐵 ↔ ∀𝑥(𝑥𝐵𝐴𝑥))
3 df-ral 2488 . 2 (∀𝑥𝐵 𝐴𝑥 ↔ ∀𝑥(𝑥𝐵𝐴𝑥))
42, 3bitr4i 187 1 (𝐴 𝐵 ↔ ∀𝑥𝐵 𝐴𝑥)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1370  wcel 2175  wral 2483  Vcvv 2771   cint 3884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-v 2773  df-int 3885
This theorem is referenced by:  elintg  3892  ssint  3900  intssunim  3906  iinuniss  4009  trint  4156  suplocexprlemmu  7830  suplocexprlemdisj  7832  suplocexprlemloc  7833  suplocexprlemub  7835
  Copyright terms: Public domain W3C validator