![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elintab | GIF version |
Description: Membership in the intersection of a class abstraction. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
inteqab.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
elintab | ⊢ (𝐴 ∈ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inteqab.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | 1 | elint 3851 | . 2 ⊢ (𝐴 ∈ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑦(𝑦 ∈ {𝑥 ∣ 𝜑} → 𝐴 ∈ 𝑦)) |
3 | nfsab1 2167 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} | |
4 | nfv 1528 | . . . 4 ⊢ Ⅎ𝑥 𝐴 ∈ 𝑦 | |
5 | 3, 4 | nfim 1572 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ {𝑥 ∣ 𝜑} → 𝐴 ∈ 𝑦) |
6 | nfv 1528 | . . 3 ⊢ Ⅎ𝑦(𝜑 → 𝐴 ∈ 𝑥) | |
7 | eleq1 2240 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑥 ∈ {𝑥 ∣ 𝜑})) | |
8 | abid 2165 | . . . . 5 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
9 | 7, 8 | bitrdi 196 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑)) |
10 | eleq2 2241 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝐴 ∈ 𝑦 ↔ 𝐴 ∈ 𝑥)) | |
11 | 9, 10 | imbi12d 234 | . . 3 ⊢ (𝑦 = 𝑥 → ((𝑦 ∈ {𝑥 ∣ 𝜑} → 𝐴 ∈ 𝑦) ↔ (𝜑 → 𝐴 ∈ 𝑥))) |
12 | 5, 6, 11 | cbval 1754 | . 2 ⊢ (∀𝑦(𝑦 ∈ {𝑥 ∣ 𝜑} → 𝐴 ∈ 𝑦) ↔ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥)) |
13 | 2, 12 | bitri 184 | 1 ⊢ (𝐴 ∈ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∀wal 1351 ∈ wcel 2148 {cab 2163 Vcvv 2738 ∩ cint 3845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2740 df-int 3846 |
This theorem is referenced by: elintrab 3857 intmin4 3873 intab 3874 intid 4225 |
Copyright terms: Public domain | W3C validator |