ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elintab GIF version

Theorem elintab 3856
Description: Membership in the intersection of a class abstraction. (Contributed by NM, 30-Aug-1993.)
Hypothesis
Ref Expression
inteqab.1 𝐴 ∈ V
Assertion
Ref Expression
elintab (𝐴 {𝑥𝜑} ↔ ∀𝑥(𝜑𝐴𝑥))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem elintab
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 inteqab.1 . . 3 𝐴 ∈ V
21elint 3851 . 2 (𝐴 {𝑥𝜑} ↔ ∀𝑦(𝑦 ∈ {𝑥𝜑} → 𝐴𝑦))
3 nfsab1 2167 . . . 4 𝑥 𝑦 ∈ {𝑥𝜑}
4 nfv 1528 . . . 4 𝑥 𝐴𝑦
53, 4nfim 1572 . . 3 𝑥(𝑦 ∈ {𝑥𝜑} → 𝐴𝑦)
6 nfv 1528 . . 3 𝑦(𝜑𝐴𝑥)
7 eleq1 2240 . . . . 5 (𝑦 = 𝑥 → (𝑦 ∈ {𝑥𝜑} ↔ 𝑥 ∈ {𝑥𝜑}))
8 abid 2165 . . . . 5 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
97, 8bitrdi 196 . . . 4 (𝑦 = 𝑥 → (𝑦 ∈ {𝑥𝜑} ↔ 𝜑))
10 eleq2 2241 . . . 4 (𝑦 = 𝑥 → (𝐴𝑦𝐴𝑥))
119, 10imbi12d 234 . . 3 (𝑦 = 𝑥 → ((𝑦 ∈ {𝑥𝜑} → 𝐴𝑦) ↔ (𝜑𝐴𝑥)))
125, 6, 11cbval 1754 . 2 (∀𝑦(𝑦 ∈ {𝑥𝜑} → 𝐴𝑦) ↔ ∀𝑥(𝜑𝐴𝑥))
132, 12bitri 184 1 (𝐴 {𝑥𝜑} ↔ ∀𝑥(𝜑𝐴𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1351  wcel 2148  {cab 2163  Vcvv 2738   cint 3845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2740  df-int 3846
This theorem is referenced by:  elintrab  3857  intmin4  3873  intab  3874  intid  4225
  Copyright terms: Public domain W3C validator