| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elintrab | GIF version | ||
| Description: Membership in the intersection of a class abstraction. (Contributed by NM, 17-Oct-1999.) |
| Ref | Expression |
|---|---|
| inteqab.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| elintrab | ⊢ (𝐴 ∈ ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐵 (𝜑 → 𝐴 ∈ 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inteqab.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | 1 | elintab 3895 | . . 3 ⊢ (𝐴 ∈ ∩ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} ↔ ∀𝑥((𝑥 ∈ 𝐵 ∧ 𝜑) → 𝐴 ∈ 𝑥)) |
| 3 | impexp 263 | . . . 4 ⊢ (((𝑥 ∈ 𝐵 ∧ 𝜑) → 𝐴 ∈ 𝑥) ↔ (𝑥 ∈ 𝐵 → (𝜑 → 𝐴 ∈ 𝑥))) | |
| 4 | 3 | albii 1492 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝐵 ∧ 𝜑) → 𝐴 ∈ 𝑥) ↔ ∀𝑥(𝑥 ∈ 𝐵 → (𝜑 → 𝐴 ∈ 𝑥))) |
| 5 | 2, 4 | bitri 184 | . 2 ⊢ (𝐴 ∈ ∩ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} ↔ ∀𝑥(𝑥 ∈ 𝐵 → (𝜑 → 𝐴 ∈ 𝑥))) |
| 6 | df-rab 2492 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} | |
| 7 | 6 | inteqi 3888 | . . 3 ⊢ ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} = ∩ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} |
| 8 | 7 | eleq2i 2271 | . 2 ⊢ (𝐴 ∈ ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝐴 ∈ ∩ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)}) |
| 9 | df-ral 2488 | . 2 ⊢ (∀𝑥 ∈ 𝐵 (𝜑 → 𝐴 ∈ 𝑥) ↔ ∀𝑥(𝑥 ∈ 𝐵 → (𝜑 → 𝐴 ∈ 𝑥))) | |
| 10 | 5, 8, 9 | 3bitr4i 212 | 1 ⊢ (𝐴 ∈ ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐵 (𝜑 → 𝐴 ∈ 𝑥)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1370 ∈ wcel 2175 {cab 2190 ∀wral 2483 {crab 2487 Vcvv 2771 ∩ cint 3884 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rab 2492 df-v 2773 df-int 3885 |
| This theorem is referenced by: elintrabg 3897 intmin 3904 bj-indint 15731 |
| Copyright terms: Public domain | W3C validator |