ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elintrab GIF version

Theorem elintrab 3836
Description: Membership in the intersection of a class abstraction. (Contributed by NM, 17-Oct-1999.)
Hypothesis
Ref Expression
inteqab.1 𝐴 ∈ V
Assertion
Ref Expression
elintrab (𝐴 {𝑥𝐵𝜑} ↔ ∀𝑥𝐵 (𝜑𝐴𝑥))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem elintrab
StepHypRef Expression
1 inteqab.1 . . . 4 𝐴 ∈ V
21elintab 3835 . . 3 (𝐴 {𝑥 ∣ (𝑥𝐵𝜑)} ↔ ∀𝑥((𝑥𝐵𝜑) → 𝐴𝑥))
3 impexp 261 . . . 4 (((𝑥𝐵𝜑) → 𝐴𝑥) ↔ (𝑥𝐵 → (𝜑𝐴𝑥)))
43albii 1458 . . 3 (∀𝑥((𝑥𝐵𝜑) → 𝐴𝑥) ↔ ∀𝑥(𝑥𝐵 → (𝜑𝐴𝑥)))
52, 4bitri 183 . 2 (𝐴 {𝑥 ∣ (𝑥𝐵𝜑)} ↔ ∀𝑥(𝑥𝐵 → (𝜑𝐴𝑥)))
6 df-rab 2453 . . . 4 {𝑥𝐵𝜑} = {𝑥 ∣ (𝑥𝐵𝜑)}
76inteqi 3828 . . 3 {𝑥𝐵𝜑} = {𝑥 ∣ (𝑥𝐵𝜑)}
87eleq2i 2233 . 2 (𝐴 {𝑥𝐵𝜑} ↔ 𝐴 {𝑥 ∣ (𝑥𝐵𝜑)})
9 df-ral 2449 . 2 (∀𝑥𝐵 (𝜑𝐴𝑥) ↔ ∀𝑥(𝑥𝐵 → (𝜑𝐴𝑥)))
105, 8, 93bitr4i 211 1 (𝐴 {𝑥𝐵𝜑} ↔ ∀𝑥𝐵 (𝜑𝐴𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1341  wcel 2136  {cab 2151  wral 2444  {crab 2448  Vcvv 2726   cint 3824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rab 2453  df-v 2728  df-int 3825
This theorem is referenced by:  elintrabg  3837  intmin  3844  bj-indint  13823
  Copyright terms: Public domain W3C validator