ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elintrab GIF version

Theorem elintrab 3934
Description: Membership in the intersection of a class abstraction. (Contributed by NM, 17-Oct-1999.)
Hypothesis
Ref Expression
inteqab.1 𝐴 ∈ V
Assertion
Ref Expression
elintrab (𝐴 {𝑥𝐵𝜑} ↔ ∀𝑥𝐵 (𝜑𝐴𝑥))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem elintrab
StepHypRef Expression
1 inteqab.1 . . . 4 𝐴 ∈ V
21elintab 3933 . . 3 (𝐴 {𝑥 ∣ (𝑥𝐵𝜑)} ↔ ∀𝑥((𝑥𝐵𝜑) → 𝐴𝑥))
3 impexp 263 . . . 4 (((𝑥𝐵𝜑) → 𝐴𝑥) ↔ (𝑥𝐵 → (𝜑𝐴𝑥)))
43albii 1516 . . 3 (∀𝑥((𝑥𝐵𝜑) → 𝐴𝑥) ↔ ∀𝑥(𝑥𝐵 → (𝜑𝐴𝑥)))
52, 4bitri 184 . 2 (𝐴 {𝑥 ∣ (𝑥𝐵𝜑)} ↔ ∀𝑥(𝑥𝐵 → (𝜑𝐴𝑥)))
6 df-rab 2517 . . . 4 {𝑥𝐵𝜑} = {𝑥 ∣ (𝑥𝐵𝜑)}
76inteqi 3926 . . 3 {𝑥𝐵𝜑} = {𝑥 ∣ (𝑥𝐵𝜑)}
87eleq2i 2296 . 2 (𝐴 {𝑥𝐵𝜑} ↔ 𝐴 {𝑥 ∣ (𝑥𝐵𝜑)})
9 df-ral 2513 . 2 (∀𝑥𝐵 (𝜑𝐴𝑥) ↔ ∀𝑥(𝑥𝐵 → (𝜑𝐴𝑥)))
105, 8, 93bitr4i 212 1 (𝐴 {𝑥𝐵𝜑} ↔ ∀𝑥𝐵 (𝜑𝐴𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1393  wcel 2200  {cab 2215  wral 2508  {crab 2512  Vcvv 2799   cint 3922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rab 2517  df-v 2801  df-int 3923
This theorem is referenced by:  elintrabg  3935  intmin  3942  bj-indint  16252
  Copyright terms: Public domain W3C validator