![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elintrab | GIF version |
Description: Membership in the intersection of a class abstraction. (Contributed by NM, 17-Oct-1999.) |
Ref | Expression |
---|---|
inteqab.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
elintrab | ⊢ (𝐴 ∈ ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐵 (𝜑 → 𝐴 ∈ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inteqab.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | 1 | elintab 3746 | . . 3 ⊢ (𝐴 ∈ ∩ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} ↔ ∀𝑥((𝑥 ∈ 𝐵 ∧ 𝜑) → 𝐴 ∈ 𝑥)) |
3 | impexp 261 | . . . 4 ⊢ (((𝑥 ∈ 𝐵 ∧ 𝜑) → 𝐴 ∈ 𝑥) ↔ (𝑥 ∈ 𝐵 → (𝜑 → 𝐴 ∈ 𝑥))) | |
4 | 3 | albii 1427 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝐵 ∧ 𝜑) → 𝐴 ∈ 𝑥) ↔ ∀𝑥(𝑥 ∈ 𝐵 → (𝜑 → 𝐴 ∈ 𝑥))) |
5 | 2, 4 | bitri 183 | . 2 ⊢ (𝐴 ∈ ∩ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} ↔ ∀𝑥(𝑥 ∈ 𝐵 → (𝜑 → 𝐴 ∈ 𝑥))) |
6 | df-rab 2397 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} | |
7 | 6 | inteqi 3739 | . . 3 ⊢ ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} = ∩ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} |
8 | 7 | eleq2i 2179 | . 2 ⊢ (𝐴 ∈ ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝐴 ∈ ∩ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)}) |
9 | df-ral 2393 | . 2 ⊢ (∀𝑥 ∈ 𝐵 (𝜑 → 𝐴 ∈ 𝑥) ↔ ∀𝑥(𝑥 ∈ 𝐵 → (𝜑 → 𝐴 ∈ 𝑥))) | |
10 | 5, 8, 9 | 3bitr4i 211 | 1 ⊢ (𝐴 ∈ ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐵 (𝜑 → 𝐴 ∈ 𝑥)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∀wal 1310 ∈ wcel 1461 {cab 2099 ∀wral 2388 {crab 2392 Vcvv 2655 ∩ cint 3735 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 |
This theorem depends on definitions: df-bi 116 df-tru 1315 df-nf 1418 df-sb 1717 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ral 2393 df-rab 2397 df-v 2657 df-int 3736 |
This theorem is referenced by: elintrabg 3748 intmin 3755 bj-indint 12812 |
Copyright terms: Public domain | W3C validator |