ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elop Unicode version

Theorem elop 4260
Description: An ordered pair has two elements. Exercise 3 of [TakeutiZaring] p. 15. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
elop.1  |-  A  e. 
_V
elop.2  |-  B  e. 
_V
elop.3  |-  C  e. 
_V
Assertion
Ref Expression
elop  |-  ( A  e.  <. B ,  C >.  <-> 
( A  =  { B }  \/  A  =  { B ,  C } ) )

Proof of Theorem elop
StepHypRef Expression
1 elop.2 . . . 4  |-  B  e. 
_V
2 elop.3 . . . 4  |-  C  e. 
_V
31, 2dfop 3803 . . 3  |-  <. B ,  C >.  =  { { B } ,  { B ,  C } }
43eleq2i 2260 . 2  |-  ( A  e.  <. B ,  C >.  <-> 
A  e.  { { B } ,  { B ,  C } } )
5 elop.1 . . 3  |-  A  e. 
_V
65elpr 3639 . 2  |-  ( A  e.  { { B } ,  { B ,  C } }  <->  ( A  =  { B }  \/  A  =  { B ,  C } ) )
74, 6bitri 184 1  |-  ( A  e.  <. B ,  C >.  <-> 
( A  =  { B }  \/  A  =  { B ,  C } ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2164   _Vcvv 2760   {csn 3618   {cpr 3619   <.cop 3621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-op 3627
This theorem is referenced by:  relop  4812  bdop  15367
  Copyright terms: Public domain W3C validator