ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  otexg Unicode version

Theorem otexg 4274
Description: An ordered triple of sets is a set. (Contributed by Jim Kingdon, 19-Sep-2018.)
Assertion
Ref Expression
otexg  |-  ( ( A  e.  U  /\  B  e.  V  /\  C  e.  W )  -> 
<. A ,  B ,  C >.  e.  _V )

Proof of Theorem otexg
StepHypRef Expression
1 df-ot 3643 . . 3  |-  <. A ,  B ,  C >.  = 
<. <. A ,  B >. ,  C >.
2 opexg 4272 . . . 4  |-  ( ( A  e.  U  /\  B  e.  V )  -> 
<. A ,  B >.  e. 
_V )
3 opexg 4272 . . . 4  |-  ( (
<. A ,  B >.  e. 
_V  /\  C  e.  W )  ->  <. <. A ,  B >. ,  C >.  e. 
_V )
42, 3sylan 283 . . 3  |-  ( ( ( A  e.  U  /\  B  e.  V
)  /\  C  e.  W )  ->  <. <. A ,  B >. ,  C >.  e. 
_V )
51, 4eqeltrid 2292 . 2  |-  ( ( ( A  e.  U  /\  B  e.  V
)  /\  C  e.  W )  ->  <. A ,  B ,  C >.  e. 
_V )
653impa 1197 1  |-  ( ( A  e.  U  /\  B  e.  V  /\  C  e.  W )  -> 
<. A ,  B ,  C >.  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    e. wcel 2176   _Vcvv 2772   <.cop 3636   <.cotp 3637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-ot 3643
This theorem is referenced by:  euotd  4299
  Copyright terms: Public domain W3C validator