ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  otexg Unicode version

Theorem otexg 4189
Description: An ordered triple of sets is a set. (Contributed by Jim Kingdon, 19-Sep-2018.)
Assertion
Ref Expression
otexg  |-  ( ( A  e.  U  /\  B  e.  V  /\  C  e.  W )  -> 
<. A ,  B ,  C >.  e.  _V )

Proof of Theorem otexg
StepHypRef Expression
1 df-ot 3570 . . 3  |-  <. A ,  B ,  C >.  = 
<. <. A ,  B >. ,  C >.
2 opexg 4187 . . . 4  |-  ( ( A  e.  U  /\  B  e.  V )  -> 
<. A ,  B >.  e. 
_V )
3 opexg 4187 . . . 4  |-  ( (
<. A ,  B >.  e. 
_V  /\  C  e.  W )  ->  <. <. A ,  B >. ,  C >.  e. 
_V )
42, 3sylan 281 . . 3  |-  ( ( ( A  e.  U  /\  B  e.  V
)  /\  C  e.  W )  ->  <. <. A ,  B >. ,  C >.  e. 
_V )
51, 4eqeltrid 2244 . 2  |-  ( ( ( A  e.  U  /\  B  e.  V
)  /\  C  e.  W )  ->  <. A ,  B ,  C >.  e. 
_V )
653impa 1177 1  |-  ( ( A  e.  U  /\  B  e.  V  /\  C  e.  W )  -> 
<. A ,  B ,  C >.  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 963    e. wcel 2128   _Vcvv 2712   <.cop 3563   <.cotp 3564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4134  ax-pr 4168
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-ot 3570
This theorem is referenced by:  euotd  4213
  Copyright terms: Public domain W3C validator