ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  otexg Unicode version

Theorem otexg 4292
Description: An ordered triple of sets is a set. (Contributed by Jim Kingdon, 19-Sep-2018.)
Assertion
Ref Expression
otexg  |-  ( ( A  e.  U  /\  B  e.  V  /\  C  e.  W )  -> 
<. A ,  B ,  C >.  e.  _V )

Proof of Theorem otexg
StepHypRef Expression
1 df-ot 3653 . . 3  |-  <. A ,  B ,  C >.  = 
<. <. A ,  B >. ,  C >.
2 opexg 4290 . . . 4  |-  ( ( A  e.  U  /\  B  e.  V )  -> 
<. A ,  B >.  e. 
_V )
3 opexg 4290 . . . 4  |-  ( (
<. A ,  B >.  e. 
_V  /\  C  e.  W )  ->  <. <. A ,  B >. ,  C >.  e. 
_V )
42, 3sylan 283 . . 3  |-  ( ( ( A  e.  U  /\  B  e.  V
)  /\  C  e.  W )  ->  <. <. A ,  B >. ,  C >.  e. 
_V )
51, 4eqeltrid 2294 . 2  |-  ( ( ( A  e.  U  /\  B  e.  V
)  /\  C  e.  W )  ->  <. A ,  B ,  C >.  e. 
_V )
653impa 1197 1  |-  ( ( A  e.  U  /\  B  e.  V  /\  C  e.  W )  -> 
<. A ,  B ,  C >.  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    e. wcel 2178   _Vcvv 2776   <.cop 3646   <.cotp 3647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-ot 3653
This theorem is referenced by:  euotd  4317
  Copyright terms: Public domain W3C validator