ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  otexg Unicode version

Theorem otexg 4263
Description: An ordered triple of sets is a set. (Contributed by Jim Kingdon, 19-Sep-2018.)
Assertion
Ref Expression
otexg  |-  ( ( A  e.  U  /\  B  e.  V  /\  C  e.  W )  -> 
<. A ,  B ,  C >.  e.  _V )

Proof of Theorem otexg
StepHypRef Expression
1 df-ot 3632 . . 3  |-  <. A ,  B ,  C >.  = 
<. <. A ,  B >. ,  C >.
2 opexg 4261 . . . 4  |-  ( ( A  e.  U  /\  B  e.  V )  -> 
<. A ,  B >.  e. 
_V )
3 opexg 4261 . . . 4  |-  ( (
<. A ,  B >.  e. 
_V  /\  C  e.  W )  ->  <. <. A ,  B >. ,  C >.  e. 
_V )
42, 3sylan 283 . . 3  |-  ( ( ( A  e.  U  /\  B  e.  V
)  /\  C  e.  W )  ->  <. <. A ,  B >. ,  C >.  e. 
_V )
51, 4eqeltrid 2283 . 2  |-  ( ( ( A  e.  U  /\  B  e.  V
)  /\  C  e.  W )  ->  <. A ,  B ,  C >.  e. 
_V )
653impa 1196 1  |-  ( ( A  e.  U  /\  B  e.  V  /\  C  e.  W )  -> 
<. A ,  B ,  C >.  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    e. wcel 2167   _Vcvv 2763   <.cop 3625   <.cotp 3626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-ot 3632
This theorem is referenced by:  euotd  4287
  Copyright terms: Public domain W3C validator