| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elpr | Unicode version | ||
| Description: A member of an unordered pair of classes is one or the other of them. Exercise 1 of [TakeutiZaring] p. 15. (Contributed by NM, 13-Sep-1995.) |
| Ref | Expression |
|---|---|
| elpr.1 |
|
| Ref | Expression |
|---|---|
| elpr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpr.1 |
. 2
| |
| 2 | elprg 3653 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 |
| This theorem is referenced by: prmg 3754 difprsnss 3771 preqr1 3809 preq12b 3811 prel12 3812 pwprss 3846 pwtpss 3847 unipr 3864 intpr 3917 zfpair2 4255 elop 4276 ordtri2or2exmidlem 4575 onsucelsucexmidlem 4578 en2lp 4603 reg3exmidlemwe 4628 xpsspw 4788 acexmidlem2 5943 2oconcl 6527 exmidpw 7007 exmidpweq 7008 renfdisj 8134 fzpr 10201 maxabslemval 11552 xrmaxiflemval 11594 isprm2 12472 2lgslem4 15613 structiedg0val 15670 bj-zfpair2 15883 ss1oel2o 15965 |
| Copyright terms: Public domain | W3C validator |