Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elpr | Unicode version |
Description: A member of an unordered pair of classes is one or the other of them. Exercise 1 of [TakeutiZaring] p. 15. (Contributed by NM, 13-Sep-1995.) |
Ref | Expression |
---|---|
elpr.1 |
Ref | Expression |
---|---|
elpr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpr.1 | . 2 | |
2 | elprg 3603 | . 2 | |
3 | 1, 2 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wo 703 wceq 1348 wcel 2141 cvv 2730 cpr 3584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 |
This theorem is referenced by: prmg 3704 difprsnss 3718 preqr1 3755 preq12b 3757 prel12 3758 pwprss 3792 pwtpss 3793 unipr 3810 intpr 3863 zfpair2 4195 elop 4216 ordtri2or2exmidlem 4510 onsucelsucexmidlem 4513 en2lp 4538 reg3exmidlemwe 4563 xpsspw 4723 acexmidlem2 5850 2oconcl 6418 exmidpw 6886 exmidpweq 6887 renfdisj 7979 fzpr 10033 maxabslemval 11172 xrmaxiflemval 11213 isprm2 12071 bj-zfpair2 13945 ss1oel2o 14026 |
Copyright terms: Public domain | W3C validator |