| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elpr | Unicode version | ||
| Description: A member of an unordered pair of classes is one or the other of them. Exercise 1 of [TakeutiZaring] p. 15. (Contributed by NM, 13-Sep-1995.) |
| Ref | Expression |
|---|---|
| elpr.1 |
|
| Ref | Expression |
|---|---|
| elpr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpr.1 |
. 2
| |
| 2 | elprg 3686 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 |
| This theorem is referenced by: prmg 3789 difprsnss 3806 preqr1 3846 preq12b 3848 prel12 3849 pwprss 3884 pwtpss 3885 unipr 3902 intpr 3955 zfpair2 4294 elop 4317 ordtri2or2exmidlem 4618 onsucelsucexmidlem 4621 en2lp 4646 reg3exmidlemwe 4671 xpsspw 4831 acexmidlem2 5998 2oconcl 6585 exmidpw 7070 exmidpweq 7071 renfdisj 8206 fzpr 10273 maxabslemval 11719 xrmaxiflemval 11761 isprm2 12639 2lgslem4 15782 structiedg0val 15841 bj-zfpair2 16273 ss1oel2o 16355 |
| Copyright terms: Public domain | W3C validator |