| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > elpr | Unicode version | ||
| Description: A member of an unordered pair of classes is one or the other of them. Exercise 1 of [TakeutiZaring] p. 15. (Contributed by NM, 13-Sep-1995.) | 
| Ref | Expression | 
|---|---|
| elpr.1 | 
 | 
| Ref | Expression | 
|---|---|
| elpr | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elpr.1 | 
. 2
 | |
| 2 | elprg 3642 | 
. 2
 | |
| 3 | 1, 2 | ax-mp 5 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 | 
| This theorem is referenced by: prmg 3743 difprsnss 3760 preqr1 3798 preq12b 3800 prel12 3801 pwprss 3835 pwtpss 3836 unipr 3853 intpr 3906 zfpair2 4243 elop 4264 ordtri2or2exmidlem 4562 onsucelsucexmidlem 4565 en2lp 4590 reg3exmidlemwe 4615 xpsspw 4775 acexmidlem2 5919 2oconcl 6497 exmidpw 6969 exmidpweq 6970 renfdisj 8086 fzpr 10152 maxabslemval 11373 xrmaxiflemval 11415 isprm2 12285 2lgslem4 15344 bj-zfpair2 15556 ss1oel2o 15638 | 
| Copyright terms: Public domain | W3C validator |