Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpr Unicode version

Theorem elpr 3548
 Description: A member of an unordered pair of classes is one or the other of them. Exercise 1 of [TakeutiZaring] p. 15. (Contributed by NM, 13-Sep-1995.)
Hypothesis
Ref Expression
elpr.1
Assertion
Ref Expression
elpr

Proof of Theorem elpr
StepHypRef Expression
1 elpr.1 . 2
2 elprg 3547 . 2
31, 2ax-mp 5 1
 Colors of variables: wff set class Syntax hints:   wb 104   wo 697   wceq 1331   wcel 1480  cvv 2686  cpr 3528 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121 This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-v 2688  df-un 3075  df-sn 3533  df-pr 3534 This theorem is referenced by:  prmg  3644  difprsnss  3658  preqr1  3695  preq12b  3697  prel12  3698  pwprss  3732  pwtpss  3733  unipr  3750  intpr  3803  zfpair2  4132  elop  4153  ordtri2or2exmidlem  4441  onsucelsucexmidlem  4444  en2lp  4469  reg3exmidlemwe  4493  xpsspw  4651  acexmidlem2  5771  2oconcl  6336  exmidpw  6802  renfdisj  7824  fzpr  9857  maxabslemval  10980  xrmaxiflemval  11019  isprm2  11798  bj-zfpair2  13108  ss1oel2o  13189
 Copyright terms: Public domain W3C validator