Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elpr | Unicode version |
Description: A member of an unordered pair of classes is one or the other of them. Exercise 1 of [TakeutiZaring] p. 15. (Contributed by NM, 13-Sep-1995.) |
Ref | Expression |
---|---|
elpr.1 |
Ref | Expression |
---|---|
elpr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpr.1 | . 2 | |
2 | elprg 3596 | . 2 | |
3 | 1, 2 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wo 698 wceq 1343 wcel 2136 cvv 2726 cpr 3577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 |
This theorem is referenced by: prmg 3697 difprsnss 3711 preqr1 3748 preq12b 3750 prel12 3751 pwprss 3785 pwtpss 3786 unipr 3803 intpr 3856 zfpair2 4188 elop 4209 ordtri2or2exmidlem 4503 onsucelsucexmidlem 4506 en2lp 4531 reg3exmidlemwe 4556 xpsspw 4716 acexmidlem2 5839 2oconcl 6407 exmidpw 6874 exmidpweq 6875 renfdisj 7958 fzpr 10012 maxabslemval 11150 xrmaxiflemval 11191 isprm2 12049 bj-zfpair2 13792 ss1oel2o 13873 |
Copyright terms: Public domain | W3C validator |