| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elpr | Unicode version | ||
| Description: A member of an unordered pair of classes is one or the other of them. Exercise 1 of [TakeutiZaring] p. 15. (Contributed by NM, 13-Sep-1995.) |
| Ref | Expression |
|---|---|
| elpr.1 |
|
| Ref | Expression |
|---|---|
| elpr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpr.1 |
. 2
| |
| 2 | elprg 3663 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 |
| This theorem is referenced by: prmg 3765 difprsnss 3782 preqr1 3822 preq12b 3824 prel12 3825 pwprss 3860 pwtpss 3861 unipr 3878 intpr 3931 zfpair2 4270 elop 4293 ordtri2or2exmidlem 4592 onsucelsucexmidlem 4595 en2lp 4620 reg3exmidlemwe 4645 xpsspw 4805 acexmidlem2 5964 2oconcl 6548 exmidpw 7031 exmidpweq 7032 renfdisj 8167 fzpr 10234 maxabslemval 11634 xrmaxiflemval 11676 isprm2 12554 2lgslem4 15695 structiedg0val 15754 bj-zfpair2 16045 ss1oel2o 16127 |
| Copyright terms: Public domain | W3C validator |