ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opi1 Unicode version

Theorem opi1 4234
Description: One of the two elements in an ordered pair. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
opi1.1  |-  A  e. 
_V
opi1.2  |-  B  e. 
_V
Assertion
Ref Expression
opi1  |-  { A }  e.  <. A ,  B >.

Proof of Theorem opi1
StepHypRef Expression
1 opi1.1 . . . 4  |-  A  e. 
_V
21snex 4187 . . 3  |-  { A }  e.  _V
32prid1 3700 . 2  |-  { A }  e.  { { A } ,  { A ,  B } }
4 opi1.2 . . 3  |-  B  e. 
_V
51, 4dfop 3779 . 2  |-  <. A ,  B >.  =  { { A } ,  { A ,  B } }
63, 5eleqtrri 2253 1  |-  { A }  e.  <. A ,  B >.
Colors of variables: wff set class
Syntax hints:    e. wcel 2148   _Vcvv 2739   {csn 3594   {cpr 3595   <.cop 3597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603
This theorem is referenced by:  opth1  4238  opth  4239
  Copyright terms: Public domain W3C validator