ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opi1 Unicode version

Theorem opi1 4226
Description: One of the two elements in an ordered pair. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
opi1.1  |-  A  e. 
_V
opi1.2  |-  B  e. 
_V
Assertion
Ref Expression
opi1  |-  { A }  e.  <. A ,  B >.

Proof of Theorem opi1
StepHypRef Expression
1 opi1.1 . . . 4  |-  A  e. 
_V
21snex 4180 . . 3  |-  { A }  e.  _V
32prid1 3695 . 2  |-  { A }  e.  { { A } ,  { A ,  B } }
4 opi1.2 . . 3  |-  B  e. 
_V
51, 4dfop 3773 . 2  |-  <. A ,  B >.  =  { { A } ,  { A ,  B } }
63, 5eleqtrri 2251 1  |-  { A }  e.  <. A ,  B >.
Colors of variables: wff set class
Syntax hints:    e. wcel 2146   _Vcvv 2735   {csn 3589   {cpr 3590   <.cop 3592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598
This theorem is referenced by:  opth1  4230  opth  4231
  Copyright terms: Public domain W3C validator