ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elop GIF version

Theorem elop 4216
Description: An ordered pair has two elements. Exercise 3 of [TakeutiZaring] p. 15. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
elop.1 𝐴 ∈ V
elop.2 𝐵 ∈ V
elop.3 𝐶 ∈ V
Assertion
Ref Expression
elop (𝐴 ∈ ⟨𝐵, 𝐶⟩ ↔ (𝐴 = {𝐵} ∨ 𝐴 = {𝐵, 𝐶}))

Proof of Theorem elop
StepHypRef Expression
1 elop.2 . . . 4 𝐵 ∈ V
2 elop.3 . . . 4 𝐶 ∈ V
31, 2dfop 3764 . . 3 𝐵, 𝐶⟩ = {{𝐵}, {𝐵, 𝐶}}
43eleq2i 2237 . 2 (𝐴 ∈ ⟨𝐵, 𝐶⟩ ↔ 𝐴 ∈ {{𝐵}, {𝐵, 𝐶}})
5 elop.1 . . 3 𝐴 ∈ V
65elpr 3604 . 2 (𝐴 ∈ {{𝐵}, {𝐵, 𝐶}} ↔ (𝐴 = {𝐵} ∨ 𝐴 = {𝐵, 𝐶}))
74, 6bitri 183 1 (𝐴 ∈ ⟨𝐵, 𝐶⟩ ↔ (𝐴 = {𝐵} ∨ 𝐴 = {𝐵, 𝐶}))
Colors of variables: wff set class
Syntax hints:  wb 104  wo 703   = wceq 1348  wcel 2141  Vcvv 2730  {csn 3583  {cpr 3584  cop 3586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592
This theorem is referenced by:  relop  4761  bdop  13910
  Copyright terms: Public domain W3C validator