![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elop | GIF version |
Description: An ordered pair has two elements. Exercise 3 of [TakeutiZaring] p. 15. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
elop.1 | ⊢ 𝐴 ∈ V |
elop.2 | ⊢ 𝐵 ∈ V |
elop.3 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
elop | ⊢ (𝐴 ∈ ⟨𝐵, 𝐶⟩ ↔ (𝐴 = {𝐵} ∨ 𝐴 = {𝐵, 𝐶})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elop.2 | . . . 4 ⊢ 𝐵 ∈ V | |
2 | elop.3 | . . . 4 ⊢ 𝐶 ∈ V | |
3 | 1, 2 | dfop 3779 | . . 3 ⊢ ⟨𝐵, 𝐶⟩ = {{𝐵}, {𝐵, 𝐶}} |
4 | 3 | eleq2i 2244 | . 2 ⊢ (𝐴 ∈ ⟨𝐵, 𝐶⟩ ↔ 𝐴 ∈ {{𝐵}, {𝐵, 𝐶}}) |
5 | elop.1 | . . 3 ⊢ 𝐴 ∈ V | |
6 | 5 | elpr 3615 | . 2 ⊢ (𝐴 ∈ {{𝐵}, {𝐵, 𝐶}} ↔ (𝐴 = {𝐵} ∨ 𝐴 = {𝐵, 𝐶})) |
7 | 4, 6 | bitri 184 | 1 ⊢ (𝐴 ∈ ⟨𝐵, 𝐶⟩ ↔ (𝐴 = {𝐵} ∨ 𝐴 = {𝐵, 𝐶})) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∨ wo 708 = wceq 1353 ∈ wcel 2148 Vcvv 2739 {csn 3594 {cpr 3595 ⟨cop 3597 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-un 3135 df-sn 3600 df-pr 3601 df-op 3603 |
This theorem is referenced by: relop 4779 bdop 14712 |
Copyright terms: Public domain | W3C validator |