ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elop GIF version

Theorem elop 4209
Description: An ordered pair has two elements. Exercise 3 of [TakeutiZaring] p. 15. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
elop.1 𝐴 ∈ V
elop.2 𝐵 ∈ V
elop.3 𝐶 ∈ V
Assertion
Ref Expression
elop (𝐴 ∈ ⟨𝐵, 𝐶⟩ ↔ (𝐴 = {𝐵} ∨ 𝐴 = {𝐵, 𝐶}))

Proof of Theorem elop
StepHypRef Expression
1 elop.2 . . . 4 𝐵 ∈ V
2 elop.3 . . . 4 𝐶 ∈ V
31, 2dfop 3757 . . 3 𝐵, 𝐶⟩ = {{𝐵}, {𝐵, 𝐶}}
43eleq2i 2233 . 2 (𝐴 ∈ ⟨𝐵, 𝐶⟩ ↔ 𝐴 ∈ {{𝐵}, {𝐵, 𝐶}})
5 elop.1 . . 3 𝐴 ∈ V
65elpr 3597 . 2 (𝐴 ∈ {{𝐵}, {𝐵, 𝐶}} ↔ (𝐴 = {𝐵} ∨ 𝐴 = {𝐵, 𝐶}))
74, 6bitri 183 1 (𝐴 ∈ ⟨𝐵, 𝐶⟩ ↔ (𝐴 = {𝐵} ∨ 𝐴 = {𝐵, 𝐶}))
Colors of variables: wff set class
Syntax hints:  wb 104  wo 698   = wceq 1343  wcel 2136  Vcvv 2726  {csn 3576  {cpr 3577  cop 3579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585
This theorem is referenced by:  relop  4754  bdop  13757
  Copyright terms: Public domain W3C validator