ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elop GIF version

Theorem elop 4264
Description: An ordered pair has two elements. Exercise 3 of [TakeutiZaring] p. 15. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
elop.1 𝐴 ∈ V
elop.2 𝐵 ∈ V
elop.3 𝐶 ∈ V
Assertion
Ref Expression
elop (𝐴 ∈ ⟨𝐵, 𝐶⟩ ↔ (𝐴 = {𝐵} ∨ 𝐴 = {𝐵, 𝐶}))

Proof of Theorem elop
StepHypRef Expression
1 elop.2 . . . 4 𝐵 ∈ V
2 elop.3 . . . 4 𝐶 ∈ V
31, 2dfop 3807 . . 3 𝐵, 𝐶⟩ = {{𝐵}, {𝐵, 𝐶}}
43eleq2i 2263 . 2 (𝐴 ∈ ⟨𝐵, 𝐶⟩ ↔ 𝐴 ∈ {{𝐵}, {𝐵, 𝐶}})
5 elop.1 . . 3 𝐴 ∈ V
65elpr 3643 . 2 (𝐴 ∈ {{𝐵}, {𝐵, 𝐶}} ↔ (𝐴 = {𝐵} ∨ 𝐴 = {𝐵, 𝐶}))
74, 6bitri 184 1 (𝐴 ∈ ⟨𝐵, 𝐶⟩ ↔ (𝐴 = {𝐵} ∨ 𝐴 = {𝐵, 𝐶}))
Colors of variables: wff set class
Syntax hints:  wb 105  wo 709   = wceq 1364  wcel 2167  Vcvv 2763  {csn 3622  {cpr 3623  cop 3625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631
This theorem is referenced by:  relop  4816  bdop  15521
  Copyright terms: Public domain W3C validator