| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elop | GIF version | ||
| Description: An ordered pair has two elements. Exercise 3 of [TakeutiZaring] p. 15. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| elop.1 | ⊢ 𝐴 ∈ V |
| elop.2 | ⊢ 𝐵 ∈ V |
| elop.3 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| elop | ⊢ (𝐴 ∈ 〈𝐵, 𝐶〉 ↔ (𝐴 = {𝐵} ∨ 𝐴 = {𝐵, 𝐶})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elop.2 | . . . 4 ⊢ 𝐵 ∈ V | |
| 2 | elop.3 | . . . 4 ⊢ 𝐶 ∈ V | |
| 3 | 1, 2 | dfop 3856 | . . 3 ⊢ 〈𝐵, 𝐶〉 = {{𝐵}, {𝐵, 𝐶}} |
| 4 | 3 | eleq2i 2296 | . 2 ⊢ (𝐴 ∈ 〈𝐵, 𝐶〉 ↔ 𝐴 ∈ {{𝐵}, {𝐵, 𝐶}}) |
| 5 | elop.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 6 | 5 | elpr 3687 | . 2 ⊢ (𝐴 ∈ {{𝐵}, {𝐵, 𝐶}} ↔ (𝐴 = {𝐵} ∨ 𝐴 = {𝐵, 𝐶})) |
| 7 | 4, 6 | bitri 184 | 1 ⊢ (𝐴 ∈ 〈𝐵, 𝐶〉 ↔ (𝐴 = {𝐵} ∨ 𝐴 = {𝐵, 𝐶})) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∨ wo 713 = wceq 1395 ∈ wcel 2200 Vcvv 2799 {csn 3666 {cpr 3667 〈cop 3669 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 |
| This theorem is referenced by: relop 4872 funopsn 5817 bdop 16238 |
| Copyright terms: Public domain | W3C validator |