![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elrabsf | GIF version |
Description: Membership in a restricted class abstraction, expressed with explicit class substitution. (The variation elrabf 2893 has implicit substitution). The hypothesis specifies that 𝑥 must not be a free variable in 𝐵. (Contributed by NM, 30-Sep-2003.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
elrabsf.1 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
elrabsf | ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq 2966 | . 2 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
2 | elrabsf.1 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
3 | nfcv 2319 | . . 3 ⊢ Ⅎ𝑦𝐵 | |
4 | nfv 1528 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
5 | nfsbc1v 2983 | . . 3 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 | |
6 | sbceq1a 2974 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
7 | 2, 3, 4, 5, 6 | cbvrab 2737 | . 2 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜑} = {𝑦 ∈ 𝐵 ∣ [𝑦 / 𝑥]𝜑} |
8 | 1, 7 | elrab2 2898 | 1 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝜑)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ∈ wcel 2148 Ⅎwnfc 2306 {crab 2459 [wsbc 2964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rab 2464 df-v 2741 df-sbc 2965 |
This theorem is referenced by: mpoxopovel 6245 zsupcllemstep 11949 infssuzex 11953 |
Copyright terms: Public domain | W3C validator |