ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrabf Unicode version

Theorem elrabf 2884
Description: Membership in a restricted class abstraction, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.)
Hypotheses
Ref Expression
elrabf.1  |-  F/_ x A
elrabf.2  |-  F/_ x B
elrabf.3  |-  F/ x ps
elrabf.4  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
elrabf  |-  ( A  e.  { x  e.  B  |  ph }  <->  ( A  e.  B  /\  ps ) )

Proof of Theorem elrabf
StepHypRef Expression
1 elex 2741 . 2  |-  ( A  e.  { x  e.  B  |  ph }  ->  A  e.  _V )
2 elex 2741 . . 3  |-  ( A  e.  B  ->  A  e.  _V )
32adantr 274 . 2  |-  ( ( A  e.  B  /\  ps )  ->  A  e. 
_V )
4 df-rab 2457 . . . 4  |-  { x  e.  B  |  ph }  =  { x  |  ( x  e.  B  /\  ph ) }
54eleq2i 2237 . . 3  |-  ( A  e.  { x  e.  B  |  ph }  <->  A  e.  { x  |  ( x  e.  B  /\  ph ) } )
6 elrabf.1 . . . 4  |-  F/_ x A
7 elrabf.2 . . . . . 6  |-  F/_ x B
86, 7nfel 2321 . . . . 5  |-  F/ x  A  e.  B
9 elrabf.3 . . . . 5  |-  F/ x ps
108, 9nfan 1558 . . . 4  |-  F/ x
( A  e.  B  /\  ps )
11 eleq1 2233 . . . . 5  |-  ( x  =  A  ->  (
x  e.  B  <->  A  e.  B ) )
12 elrabf.4 . . . . 5  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
1311, 12anbi12d 470 . . . 4  |-  ( x  =  A  ->  (
( x  e.  B  /\  ph )  <->  ( A  e.  B  /\  ps )
) )
146, 10, 13elabgf 2872 . . 3  |-  ( A  e.  _V  ->  ( A  e.  { x  |  ( x  e.  B  /\  ph ) } 
<->  ( A  e.  B  /\  ps ) ) )
155, 14syl5bb 191 . 2  |-  ( A  e.  _V  ->  ( A  e.  { x  e.  B  |  ph }  <->  ( A  e.  B  /\  ps ) ) )
161, 3, 15pm5.21nii 699 1  |-  ( A  e.  { x  e.  B  |  ph }  <->  ( A  e.  B  /\  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348   F/wnf 1453    e. wcel 2141   {cab 2156   F/_wnfc 2299   {crab 2452   _Vcvv 2730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rab 2457  df-v 2732
This theorem is referenced by:  elrab  2886  frind  4337  rabxfrd  4454  infssuzcldc  11906  nnwosdc  11994
  Copyright terms: Public domain W3C validator