Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elrabf | Unicode version |
Description: Membership in a restricted class abstraction, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.) |
Ref | Expression |
---|---|
elrabf.1 | |
elrabf.2 | |
elrabf.3 | |
elrabf.4 |
Ref | Expression |
---|---|
elrabf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2720 | . 2 | |
2 | elex 2720 | . . 3 | |
3 | 2 | adantr 274 | . 2 |
4 | df-rab 2441 | . . . 4 | |
5 | 4 | eleq2i 2221 | . . 3 |
6 | elrabf.1 | . . . 4 | |
7 | elrabf.2 | . . . . . 6 | |
8 | 6, 7 | nfel 2305 | . . . . 5 |
9 | elrabf.3 | . . . . 5 | |
10 | 8, 9 | nfan 1542 | . . . 4 |
11 | eleq1 2217 | . . . . 5 | |
12 | elrabf.4 | . . . . 5 | |
13 | 11, 12 | anbi12d 465 | . . . 4 |
14 | 6, 10, 13 | elabgf 2850 | . . 3 |
15 | 5, 14 | syl5bb 191 | . 2 |
16 | 1, 3, 15 | pm5.21nii 694 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1332 wnf 1437 wcel 2125 cab 2140 wnfc 2283 crab 2436 cvv 2709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-rab 2441 df-v 2711 |
This theorem is referenced by: elrab 2864 frind 4307 rabxfrd 4423 infssuzcldc 11811 |
Copyright terms: Public domain | W3C validator |