| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elrabf | Unicode version | ||
| Description: Membership in a restricted class abstraction, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.) |
| Ref | Expression |
|---|---|
| elrabf.1 |
|
| elrabf.2 |
|
| elrabf.3 |
|
| elrabf.4 |
|
| Ref | Expression |
|---|---|
| elrabf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2788 |
. 2
| |
| 2 | elex 2788 |
. . 3
| |
| 3 | 2 | adantr 276 |
. 2
|
| 4 | df-rab 2495 |
. . . 4
| |
| 5 | 4 | eleq2i 2274 |
. . 3
|
| 6 | elrabf.1 |
. . . 4
| |
| 7 | elrabf.2 |
. . . . . 6
| |
| 8 | 6, 7 | nfel 2359 |
. . . . 5
|
| 9 | elrabf.3 |
. . . . 5
| |
| 10 | 8, 9 | nfan 1589 |
. . . 4
|
| 11 | eleq1 2270 |
. . . . 5
| |
| 12 | elrabf.4 |
. . . . 5
| |
| 13 | 11, 12 | anbi12d 473 |
. . . 4
|
| 14 | 6, 10, 13 | elabgf 2922 |
. . 3
|
| 15 | 5, 14 | bitrid 192 |
. 2
|
| 16 | 1, 3, 15 | pm5.21nii 706 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rab 2495 df-v 2778 |
| This theorem is referenced by: elrab 2936 invdisjrab 4053 frind 4417 rabxfrd 4534 infssuzcldc 10415 nnwosdc 12475 |
| Copyright terms: Public domain | W3C validator |