| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > elrabf | Unicode version | ||
| Description: Membership in a restricted class abstraction, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.) | 
| Ref | Expression | 
|---|---|
| elrabf.1 | 
 | 
| elrabf.2 | 
 | 
| elrabf.3 | 
 | 
| elrabf.4 | 
 | 
| Ref | Expression | 
|---|---|
| elrabf | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elex 2774 | 
. 2
 | |
| 2 | elex 2774 | 
. . 3
 | |
| 3 | 2 | adantr 276 | 
. 2
 | 
| 4 | df-rab 2484 | 
. . . 4
 | |
| 5 | 4 | eleq2i 2263 | 
. . 3
 | 
| 6 | elrabf.1 | 
. . . 4
 | |
| 7 | elrabf.2 | 
. . . . . 6
 | |
| 8 | 6, 7 | nfel 2348 | 
. . . . 5
 | 
| 9 | elrabf.3 | 
. . . . 5
 | |
| 10 | 8, 9 | nfan 1579 | 
. . . 4
 | 
| 11 | eleq1 2259 | 
. . . . 5
 | |
| 12 | elrabf.4 | 
. . . . 5
 | |
| 13 | 11, 12 | anbi12d 473 | 
. . . 4
 | 
| 14 | 6, 10, 13 | elabgf 2906 | 
. . 3
 | 
| 15 | 5, 14 | bitrid 192 | 
. 2
 | 
| 16 | 1, 3, 15 | pm5.21nii 705 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-v 2765 | 
| This theorem is referenced by: elrab 2920 frind 4387 rabxfrd 4504 infssuzcldc 10325 nnwosdc 12206 | 
| Copyright terms: Public domain | W3C validator |