| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elrabf | Unicode version | ||
| Description: Membership in a restricted class abstraction, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.) |
| Ref | Expression |
|---|---|
| elrabf.1 |
|
| elrabf.2 |
|
| elrabf.3 |
|
| elrabf.4 |
|
| Ref | Expression |
|---|---|
| elrabf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2811 |
. 2
| |
| 2 | elex 2811 |
. . 3
| |
| 3 | 2 | adantr 276 |
. 2
|
| 4 | df-rab 2517 |
. . . 4
| |
| 5 | 4 | eleq2i 2296 |
. . 3
|
| 6 | elrabf.1 |
. . . 4
| |
| 7 | elrabf.2 |
. . . . . 6
| |
| 8 | 6, 7 | nfel 2381 |
. . . . 5
|
| 9 | elrabf.3 |
. . . . 5
| |
| 10 | 8, 9 | nfan 1611 |
. . . 4
|
| 11 | eleq1 2292 |
. . . . 5
| |
| 12 | elrabf.4 |
. . . . 5
| |
| 13 | 11, 12 | anbi12d 473 |
. . . 4
|
| 14 | 6, 10, 13 | elabgf 2945 |
. . 3
|
| 15 | 5, 14 | bitrid 192 |
. 2
|
| 16 | 1, 3, 15 | pm5.21nii 709 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rab 2517 df-v 2801 |
| This theorem is referenced by: elrab 2959 invdisjrab 4077 frind 4443 rabxfrd 4560 infssuzcldc 10455 nnwosdc 12560 |
| Copyright terms: Public domain | W3C validator |