ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elsn2g GIF version

Theorem elsn2g 3651
Description: There is only one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. This variation requires only that 𝐵, rather than 𝐴, be a set. (Contributed by NM, 28-Oct-2003.)
Assertion
Ref Expression
elsn2g (𝐵𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵))

Proof of Theorem elsn2g
StepHypRef Expression
1 elsni 3636 . 2 (𝐴 ∈ {𝐵} → 𝐴 = 𝐵)
2 snidg 3647 . . 3 (𝐵𝑉𝐵 ∈ {𝐵})
3 eleq1 2256 . . 3 (𝐴 = 𝐵 → (𝐴 ∈ {𝐵} ↔ 𝐵 ∈ {𝐵}))
42, 3syl5ibrcom 157 . 2 (𝐵𝑉 → (𝐴 = 𝐵𝐴 ∈ {𝐵}))
51, 4impbid2 143 1 (𝐵𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wcel 2164  {csn 3618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-sn 3624
This theorem is referenced by:  elsn2  3652  elsuc2g  4436  mptiniseg  5160  elfzp1  10138  fzosplitsni  10302  zfz1isolemiso  10910  1nsgtrivd  13289  zrhrhmb  14110  ply1termlem  14888
  Copyright terms: Public domain W3C validator