![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elsn2g | GIF version |
Description: There is only one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. This variation requires only that 𝐵, rather than 𝐴, be a set. (Contributed by NM, 28-Oct-2003.) |
Ref | Expression |
---|---|
elsn2g | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsni 3484 | . 2 ⊢ (𝐴 ∈ {𝐵} → 𝐴 = 𝐵) | |
2 | snidg 3493 | . . 3 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ {𝐵}) | |
3 | eleq1 2157 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ {𝐵} ↔ 𝐵 ∈ {𝐵})) | |
4 | 2, 3 | syl5ibrcom 156 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 = 𝐵 → 𝐴 ∈ {𝐵})) |
5 | 1, 4 | impbid2 142 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1296 ∈ wcel 1445 {csn 3466 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-tru 1299 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-v 2635 df-sn 3472 |
This theorem is referenced by: elsn2 3498 elsuc2g 4256 mptiniseg 4959 elfzp1 9635 fzosplitsni 9795 zfz1isolemiso 10359 |
Copyright terms: Public domain | W3C validator |